Hak Cipta © 2015 pada Kementerian Pendidikan dan Kebudayaan
Dilindungi Undang-Undang.

Katalog Dalam Terbitan (KDT)

vi, 146 hlm : ilus. ; 25 cm.

Untuk SMP/MTs Kelas IX Semester 2
ISBN ---------- (jilid 3b)

I. Matematika -- Studi dan Pengajaran
II. Kementerian Pendidikan dan Kebudayaan

Kontributor Naskah : Subchan, Winarni, Lukman Hanafi, M. Syifa'ul Mufid, Kistosil Fahim, Wawan Hafid Syaifudin, dan Sari Cahyaningtias

Penelaah : Agung Lukito, Ali Mahmudi, Kusnadi, dan Turmudi.

Penyelia Penerbitan : Pusat Kurikulum dan Perbukuan, Balitbang, Kemdikbud.

Cetakan ke-1, 2015
Disusun dengan huruf Times New Roman, 11 pt.
Kata Pengantar

Matematika adalah bahasa universal dan karenanya kemampuan matematika siswa suatu negara sangat mudah dibandingkan dengan negara lain. Selain itu, matematika juga dipakai sebagai alat ukur untuk menentukan kemajuan pendidikan di suatu negara. Kita mengenal PISA (Program for International Student Assessment) dan TIMSS (The International Mathematics and Science Survey) yang secara berkala mengukur dan membandingkan antara lain kemajuan pendidikan matematika di beberapa negara.

Walaupun demikian, pembahasan materi selalu didahului dengan pengetahuan konkrit yang dijumpai siswa dalam kehidupan sehari-hari. Permasalahan konkrit tersebut dipegunakan sebagai jembatan untuk menuju ke dunia matematika abstrak melalui pemahaman simbol-simbol matematika yang sesuai melalui pemodelan. Sesampainya pada ranah abstrak, metode-metode matematika diperkenalkan untuk menyelaraskan model permasalahan yang diperoleh dan mengembalikan hasilnya pada ranah konkrit.

Buku ini menjabarkan usaha minimal yang harus dilakukan siswa untuk mencapai kompetensi yang diharapkan. Sesuai dengan pendekatan yang dipegunakan dalam Kurikulum 2013, siswa diajak berani untuk mencari sumber belajar lain yang tersedia dan terbentang luas di sekitarnya. Peran guru sangat penting untuk meningkatkan dan menyusun daya serap siswa dengan ketersedian kegiatan pada buku ini. Guru dapat memperkayanya dengan kreasi dalam bentuk kegiatan-kegiatan lain yang sesuai dan relevan yang bersumber dari lingkungan sosial dan alam.

Jakarta, Januari 2015

Menteri Pendidikan dan Kebudayaan

Di unduh dari : Bukupaket.com
DAFTAR ISI

Kata Pengantar ... iii
Daftar Isi ... iv

Bab VII Peluang .. 1
Mengenal Tokoh .. 3
A. Ruang Sampel ... 4
 Latihan 7.1 Ruang Sampel .. 9
B. Peluang Teoretik dan Empirik ... 11
 Latihan 7.2 Peluang Empirik dan Peluang Teoretik 17
 Uji Kompetensi 7 ... 20

Bab VIII Bidang Kartesius ... 23
Mengenal Tokoh .. 25
A. Pengantar Bidang Kartesius ... 26
 Materi Esensi ... 30
 Latihan 8.1 Pengantar Bidang Kartesius .. 34
B. Jarak ... 37
 Materi Esensi ... 41
 Latihan 8.2 Jarak ... 44
 Proyek 8 ... 45
 Uji Kompetensi 8 ... 46

Bab IX Sistem Persamaan Linear Dua Variabel .. 51
Mengenal Tokoh .. 53
A. Memodelkan Masalah dalam Persamaan Linear Dua Variabel 54
 Materi Esensi ... 58
 Latihan 9.1 Memodelkan Masalah dalam PLDV atau SPLDV 63
B. Menyelesaikan Model SPLDV dari suatu Permasalahan 65
 Materi Esensi ... 72

Di unduh dari : Bukupaket.com
Latihan 9.2 Menyelesaikan Masalah yang Berkaitan dengan SPLDV ... 80
Proyek 9 ... 82
Uji Kompetensi 9 .. 83

Bab X Fungsi Kuadrat .. 87
Mengenal Tokoh ... 89
A. Grafik Fungsi Kuadrat ... 90
 Materi Esensi ... 96
 Latihan 10.1 Grafik Fungsi Kuadrat ... 99
B. Sumbu Simetri dan Nilai Optimum .. 100
 Materi Esensi ... 104
 Latihan 10.2 Menentukan Sumbu Simetri dan Titik Optimum .. 108
C. Menentukan Fungsii Kuadrat ... 109
 Materi Esensi ... 114
 Latihan 10.3 Menentukan Fungsi Kuadrat ... 120
D. Aplikasi Fungsi Kuadrat .. 121
 Materi Esensi ... 127
 Latihan 10.4 Aplikasi Fungsi Kuadrat .. 130
Proyek 10 ... 133
Uji Kompetensi 10 ... 133

Contoh Penilaian Sikap .. 136
Rubrik Penilaian Sikap .. 137
Contoh Penilaian Diri .. 138
Contoh Penilaian Partisipasi Siswa .. 139
Lembar Partisipasi ... 140
Contoh Pengolahan Laporan Pencapaian Kompetensi Matematika .. 141
Daftar Pustaka .. 144
Glosarium .. 145
Pernahkah kamu membatalkan bepergian karena merperkirakan akan terjadi hujan dan ternyata tidak terjadi hujan. Pernahkah kamu mengupas mangga yang terlihat dari kulitnya manis, ternyata rasanya asam. Pernahkah kamu menonton adu tendangan penalti pada pertandingan sepak bola. Ada berapa kemungkinan kejadian dalam tendangan penalti?

Dalam kehidupan sehari-hari kita dihadapkan dalam beberapa kemungkinan kejadian, dimana kita harus memilih. Bab ini membahas tentang peluang dari suatu kejadian.

Kata Kunci
- Ruang Sampel
- Titik Sampel
- Kejadian
- Peluang Empiri
- Peluang Teoretik

Kompetensi Dasar
1.1 Menghargai dan menghayati ajaran agama yang dianutnya.
2.2 Memiliki rasa ingin tahu, percaya diri dan ketertarikan pada matematika serta memilikir rasa percaya pada daya dan kegunaan matematika, yang terbentuk melalui pengalaman belajar.
3.9 Menentukan peluang suatu kejadian sederhana secara empirik dan teoretik.
3.13 Memahami konsep ruang sampel suatu percobaan.
4.7 Menerapkan prinsip-prinsip peluang untuk menyelesaikan masalah nyata.

Pengalaman Belajar
1. Menentukan ruang sampel dan titik sampel dari suatu kejadian.
2. Memahami peluang empirik dan peluang teoretik dari suatu kejadian.
3. Menerapkan prinsip-prinsip peluang untuk menyelesaikan masalah.
Pafnuty Lvovich Chebyshev, lahir 16 Mei 1821, merupakan salah satu anak dari sembilan saudara. Karena cacat yang dimilikinya ia tidak bisa bermain dengan teman-temannya, dan memfokuskan dirinya pada pelajaran.

Setelah menerima gelar professor dari Moscow University, ia berpindah ke St. Petersburg, dimana ia mendirikan sekolah matematika yang paling berpengaruh di Rusia. Chebyshev dikenal untuk karyanya di bidang probabilitas, statistika, mekanika, dan nomor teori. Dia mengembangkan dasar pertidaksamaan dari teori probabilitas, yang disebut Pertidaksamaan Chebyshev. Dengan kontribusinya yang sangat besar dalam matematika ia dianggap sebagai bapak pendiri matematika di Rusia.

Beliau adalah seorang pria yang sepenuhnya setia dengan pekerjaannya. Chebyshev meninggal dunia pada usia 73 tahun. Ia tetap dikenang hingga sekarang dengan teori yang dikemukakan. Untuk menghormati jasanya, di kota St. Petersburg dibangun institut penelitian matematika yang dinamakan Chebyshev.

Berdasarkan uraian di atas dapat kita ambil beberapa hikmah, antara lain:
1. Keterbatasan fisik tidak dapat menghalangi seseorang untuk menuntut ilmu dan menggapai mimpi.
2. Seorang yang belajar matematika dengan sungguh-sungguh dapat menguasai ilmu di bidang lain.
3. Chebyshev dikenang sampai sekarang berkat kontribusinya di ilmu matematika.
A. Ruang Sampel

Pertanyaan Penting

Apa yang dimaksud dengan ruang sampel dan bagaimana mendapatkannya?

Kerjakan beberapa kegiatan berikut agar kamu dapat mengetahui dan memahami jawaban pertanyaan diatas.

Kegiatan 7.1 Mengelompokkan Bulan dalam Kalender Masehi

Kerjakan kegiatan ini dengan teman sebangkumu. Siapkan kalender Masehi.

a. Berapa banyak bulan dalam satu tahun? Tuliskan semuanya secara berurutan.

Banyaknya kelompok adalah ...

b. Kelompokkan bulan-bulan tersebut berdasarkan huruf pertamanya.

Banyaknya kelompok adalah ...

c. Kelompokkan bulan-bulan tersebut berdasarkan huruf terakhirnya.

Banyaknya kelompok adalah ...
d. Kelompokkan bulan-bulan tersebut berdasarkan banyaknya hari.

Banyaknya kelompok adalah ...

e. Kelompokkan bulan-bulan tersebut berdasarkan hari pertamanya.

Banyaknya kelompok adalah ...

f. Kelompokkan bulan-bulan tersebut berdasarkan hari terakhirnya.

Banyaknya kelompok adalah ...

Ayo Kita Amati

1. Berapa banyak bulan yang huruf pertamanya adalah J?
2. Berapa banyak bulan yang huruf terakhirnya adalah I?
3. Berapa banyak bulan yang huruf pertamanya adalah B?
4. Berapa banyak bulan yang terdiri dari 30 hari?
5. Berapa banyak bulan yang terdiri dari 29 hari?
6. Berapa banyak bulan yang hari pertamanya adalah Sabtu?
7. Berapa banyak bulan yang hari terakhirnya adalah Selasa?
Ayo Kita Simpulkan

Pada kegiatan ini himpunan yang beranggotakan nama-nama bulan adalah ruang sampel, sedangkan nama-nama bulan tersebut merupakan titik sampel. Himpunan bagian yang telah dikelompokkan berdasarkan kondisi atau sifat tertentu seperti “Bulan yang huruf pertamanya adalah J.”, “Bulan yang terdiri dari 31 hari.”, “Bulan yang hari pertamanya adalah Senin” merupakan suatu kejadian. Banyaknya titik sampel pada ruang sampel \(S \) dinotasikan dengan \(n(S) \) sedangkan banyaknya titik sampel kejadian \(A \) dinyatakan dengan \(n(A) \).

Ayo Kita Mencoba

Berikan contoh lain dan tentukan ruang sampel, titik sampel dan kejadian.

Kegiatan 7.2 Menentukan Ruang Sampel Suatu Eksperimen

Kerjakan dengan teman sebangkumu.

1. Ambil sebuah uang koin dan kertas karton. Buat kartu dari kertas karton berukuran 5 cm \(\times \) 5 cm, lalu gambar sisi depan dengan hewan dan belakang dengan buah.
2. Lepar uang koin dan kartu sebanyak 20 kali, catat hasilnya.
3. Apa bedanya apabila uang koin dan kartu dilempar sebanyak 30 kali?
4. Diskusikan hasilnya dan simpulkan

Gunakan kalimatmu sendiri

Di unduh dari : Bukupaket.com
Keterangan:
- $G = \text{muncul gambar pada uang koin.}$
- $A = \text{muncul angka pada uang koin.}$
- $H = \text{muncul gambar hewan pada kartu.}$
- $B = \text{muncul gambar buah pada kartu.}$

Ayo Kita Mencoba

Kerjakan dengan temanmu.

1. Ambil sebuah koin dan dadu. Lemparkan koin dan dadu bersama 20 kali, catat hasilnya, lalu gambar dalam diagram larik.

 Koin

 \[
 \begin{array}{c}
 \text{A} \\
 \text{G}
 \end{array}
 \]

 Dadu

 1 2 3 4 5 6

2. Diskusikan hasilnya dengan temanmu dan paparkan di depan kelas.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>
 A | (A, 1) |
 G |

 A

 1 \(\rightarrow (A, 1)\)

 2 \(\rightarrow \ldots\)

 3 \(\rightarrow \ldots\)

 4 \(\rightarrow \ldots\)

 5 \(\rightarrow \ldots\)

 6 \(\rightarrow \ldots\)
1. Uang koin di samping memiliki dua sisi; yakni, sisi gambar (G) dan sisi angka (A), sedangkan kartu bergambar memiliki dua gambar; yakni, hewan (H) dan buah (B). Jika uang koin dan kartu tersebut dilempar secara bersamaan maka banyaknya titik sampel adalah $4 = 2 \times 2$.

2. Dadu memiliki enam sisi; yakni angka 1, 2, 3, ..., 6. Jika uang koin dan dadu dilempar secara bersamaan maka banyaknya titik sampel adalah $12 = 6 \times 2$.

3. Misalkan terdapat dua objek percobaan. Objek pertama memiliki n_1 kemungkinan sedangkan objek kedua memiliki n_2 kemungkinan. Jika dilakukan percobaan dengan dua objek tersebut secara bersamaan maka banyaknya titik sampel adalah $n_1 \times n_2$.

Contoh 7.1 Menentukan Ruang Sampel

Jika kamu melempar dua koin bersama, ruang sampel yang diperoleh adalah

$$S = \{GG, GA, AG, AA\}$$

dimana G berarti muncul gambar dan A berarti muncul angka. Elemen GA di dalam ruang sampel berarti muncul gambar pada koin pertama dan muncul angka pada koin kedua. Bila munculnya gambar dilambangkan dengan 1 dan angka dengan 0 maka ruang sampel ini dapat juga ditulis dalam bentuk pasangan terurut berikut

$$S = \{(1, 1), (1, 0), (0, 1), (0, 0)\}$$
Contoh 7.2 Memilih Pakaian

Dwi akan menghadiri pesta ulang tahun temannya. Dwi ingin datang dengan pakaian yang menawan. Dwi memiliki koleksi 4 gaun dan 5 sepatu. Ruang sampel untuk percobaan memilih pakaian adalah

\[S = \{(g_1, s_1), (g_1, s_2), (g_1, s_4), (g_1, s_5), (g_2, s_1), (g_2, s_2), (g_2, s_4), (g_2, s_5), (g_3, s_1), (g_3, s_2), (g_3, s_4), (g_3, s_5), (g_4, s_1), (g_4, s_2), (g_4, s_4), (g_4, s_5)\}\]

Banyaknya ruang sampel adalah \(4 \times 5 = 20\).

Ayo Kita Tinjau Ulang

1. Misalkan terdapat suatu percobaan dengan ruang sampel \(S\) dan kejadian \(A\).
 a. Apakah mungkin \(n(A) < 0\). Jelaskan analisismu.
 b. Apakah mungkin \(n(A) = 0\). Jelaskan analisismu.
 c. Apakah mungkin \(n(A) > n(S)\). Jelaskan analisismu.

Latihan 7.1 Ruang Sampel

Carilah ruang sampel percobaan berikut.

<table>
<thead>
<tr>
<th>1.</th>
<th>Pembuatan maskot sekolah dengan pilihan hewan dan model yang digunakan.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maskot Sekolah</td>
</tr>
<tr>
<td></td>
<td>Hewan Beruang, Garuda, Singa</td>
</tr>
<tr>
<td></td>
<td>Model Nyata, Kartun</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.</th>
<th>Acara resepsi pernikahan dengan pilihan adat dan waktu.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resepsi Pernikahan</td>
</tr>
<tr>
<td></td>
<td>Adat Sunda, Jawa, Bali</td>
</tr>
<tr>
<td></td>
<td>Waktu 1:00 P.M.-3:00 P.M., 6:00 P.M.-8:00 P.M.</td>
</tr>
</tbody>
</table>
3. Membuat minuman dengan pilihan ukuran gelas dan rasa.

<table>
<thead>
<tr>
<th>Ukuran</th>
<th>Rasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kecil</td>
<td>Susu, Jus Jambu, Jus Melon, Es Teh, Kopi</td>
</tr>
<tr>
<td>Sedang</td>
<td></td>
</tr>
<tr>
<td>Besar</td>
<td></td>
</tr>
</tbody>
</table>

4. Pemilihan flashdisk pilihan memori dan warna.

<table>
<thead>
<tr>
<th>Memori</th>
<th>Warna</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Gb, 4 Gb, 8 Gb, 16 Gb</td>
<td>Merah, Silver, Hitam, Biru, Hijau</td>
</tr>
</tbody>
</table>

5. Membuat catering dengan pilihan makanan, lauk dan minuman.

<table>
<thead>
<tr>
<th>Catering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makanan</td>
</tr>
<tr>
<td>Nasi Kuning, Nasi Putih, Mie Goreng, Mie Rebus</td>
</tr>
<tr>
<td>Lauk</td>
</tr>
<tr>
<td>Tempu, Tahu, Ikan Bakar, Ayam Goreng, Ayam Bakar</td>
</tr>
<tr>
<td>Minuman</td>
</tr>
<tr>
<td>Teh, Kopi, Jus Jambu, Soda Gembira</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kostum Badut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motif</td>
</tr>
<tr>
<td>2 Gb, 4 Gb, 8 Gb, 16 Gb</td>
</tr>
<tr>
<td>Pakaian</td>
</tr>
<tr>
<td>Polkadot, Lorek-Lorek, Kotak-Kotak</td>
</tr>
<tr>
<td>Wig</td>
</tr>
<tr>
<td>Satu Warna, Warna-Warni</td>
</tr>
<tr>
<td>Talenta</td>
</tr>
<tr>
<td>Balon Hewan, Sepeda Satu Roda, Magic</td>
</tr>
</tbody>
</table>

7. Misalkan kamu melempar \(m \) dadu secara bersamaan. Misalkan \(S \) merupakan ruang sampelnya. Berapakah nilai \(n(S) \)?

8. Misalkan kamu melempar \(p \) dadu dan \(q \) uang koin secara bersamaan. Misalkan \(S \) merupakan ruang sampelnya. Berapakah nilai \(n(S) \)?

9. **Berpikir Kritis.** Apakah mungkin \(n(S) = 0 \)? Jelaskan analisis.

B. Peluang Teoretik dan Empirik

Pertanyaan Penting

Apa yang dimaksud dengan peluang dan bagaimana menentukan peluang secara teoretik dan empirik?

Kerjakan kegiatan berikut agar kamu dapat mengetahui dan memahami jawaban pertanyaan di atas.

Kegiatan 7.3 Melempar Dadu

Kerjakan dengan teman sebangkumu.

a. Lemparkan dadu sebanyak 60 kali dan mintalah temanmu untuk mencatat mata dadu yang muncul.

b. Lengkapi tabel berikut:

<table>
<thead>
<tr>
<th>Mata Dadu</th>
<th>Kemunculan $n(A)$</th>
<th>Banyak Percobaan $n(S)$</th>
<th>$\frac{n(A)}{n(S)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angka 1</td>
<td>$n(A_1) = ...$</td>
<td>60</td>
<td>$\frac{n(A_1)}{n(S)} = \ldots$</td>
</tr>
<tr>
<td>Angka 2</td>
<td>$n(A_2) = ...$</td>
<td>60</td>
<td>$\frac{n(A_2)}{n(S)} = \ldots$</td>
</tr>
<tr>
<td>Angka 3</td>
<td>$n(A_3) = ...$</td>
<td>60</td>
<td>$\frac{n(A_3)}{n(S)} = \ldots$</td>
</tr>
<tr>
<td>Angka 4</td>
<td>$n(A_4) = ...$</td>
<td>60</td>
<td>$\frac{n(A_4)}{n(S)} = \ldots$</td>
</tr>
<tr>
<td>Angka 5</td>
<td>$n(A_i) = ...$</td>
<td>60</td>
<td>$\frac{n(A_i)}{n(S)} = ...$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Angka 6</td>
<td>$n(A_i) = ...$</td>
<td>60</td>
<td>$\frac{n(A_i)}{n(S)} = ...$</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

e. Mata dadu yang paling sering muncul adalah ...
d. Mata dadu yang paling jarang muncul adalah ...
e. Bandingkan dengan hasil yang diperoleh kelompok lain. Apakah hasilnya sama?
f. Jika kamu melakukan percobaan melempar dadu sebanyak 120, apakah hasil pada kolom terakhir tetap sama? Jelaskan analisamu.

Nilai perbandingan pada kolom terakhir disebut dengan **peluang empirik**.

Ayo Kita Simpulkan

Kegiatan 7.4 Permainan Suit Jari

a. Bermainlah suit jari dengan teman sebangkumu sebanyak 30 kali dan catat hasilnya.
b. Berapa banyak kemungkinan hasil yang terjadi?

Perhatikan tabel di bawah ini. Isilah kotak yang kosong dengan keterangan: “Pemain A Menang”, “Pemain B menang” atau “Seri”.

Di unduh dari: Bukupaket.com
c. Berapa banyak kemungkinan pemain A bisa memenangkan permainan suit jari?

d. Berapa banyak kemungkinan pemain B bisa memenangkan permainan suit jari?

e. Berapa banyak kemungkinan terjadi seri (kedua pemain tidak ada yang menang)?

f. Diantara pemain A dan pemain B siapakah yang lebih berpeluang untuk memenangkan permainan suit jari?

Selanjutnya dimisalkan:

- \(n(S) \) = banyaknya kemungkinan hasil yang terjadi.
- \(n(A) \) = banyaknya kemungkinan pemain A menang.
- \(n(B) \) = banyaknya kemungkinan pemain B menang.

a. Dari hasil b sampai dengan d, diperoleh

\[
\begin{align*}
 n(S) &= \ldots \\
 n(A) &= \ldots \\
 n(B) &= \ldots
\end{align*}
\]

b. Selanjutnya diperoleh

\[
\frac{n(A)}{n(S)} = \ldots, \quad \frac{n(B)}{n(S)} = \ldots
\]

Nilai perbandingan di atas disebut dengan **peluang teoretik**.
c. Apakah $\frac{n(A)}{n(S)}$ sama dengan $\frac{n(B)}{n(S)}$?

d. Apa yang dapat kamu simpulkan dari jawaban f dengan jawaban i?

Ayo Kita Simpulkan

- Berdasarkan Kegiatan 7.4 ini dapat disimpulkan bahwa secara teoretik peluang pemain A menang adalah ... peluang pemain B menang.
- Setelah melakukan suit sebanyak 30 kali, siapakah yang menjadi pemenang?
- Dimisalkan
 - $n(S)$ adalah banyaknya titik sampel dari ruang sampel suatu percobaan.
 - $n(A)$ adalah banyaknya titik sampel kejadian A.
 - $P(A)$ adalah peluang secara teoretik kejadian A terjadi.

Maka diperoleh

$$P(A) = \cdots$$

- Berdasarkan butir a dan b, tentukan perbedaan peluang empirik dengan peluang teoretik?

Contoh 7.3

Melempar Dadu

Jika kamu melemparkan dua dadu secara bersamaan, berapakah peluang:

a. Diperoleh dua mata dadu yang sama.

b. Diperoleh dua mata dadu yang jumlahnya adalah 10.

c. Diperoleh dua mata dadu yang jumlahnya merupakan bilangan prima.

Alternatif Penyelesaian:

1. Menentukan ruang sampel:

$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)\}$$
Pasangan berurutan (2, 1) menyatakan dadu pertama muncul angka 2 dan dadu kedua muncul angka 1. Banyaknya titik sampel dari ruang sampel adalah \(n(S) = 6 \times 6 = 36 \).

2. Menentukan titik sampel kejadian. Berdasarkan soal, terdapat tiga kejadian:
 - \(A_1 \) = Kejadian muncul dua mata dadu yang sama.
 - \(A_2 \) = Kejadian muncul dua mata dadu yang jumlahnya adalah 10.
 - \(A_3 \) = Kejadian muncul dua mata dadu yang jumlahnya merupakan bilangan prima.

 Berdasarkan butir satu, diperoleh
 - \(A_1 = \{ (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) \} \), \(n(A_1) = 6 \).
 - \(A_2 = \{ (4, 6), (5, 5), (6, 4) \} \), \(n(A_2) = 3 \).
 - \(A_3 = \{ (1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2), (5, 6), (6, 1), (6, 5) \} \), \(n(A_3) = 15 \).

3. Menentukan peluang:
 - \(P(A_1) = \frac{n(A_1)}{n(S)} = \frac{6}{36} = \frac{1}{6} \)
 - \(P(A_2) = \frac{n(A_2)}{n(S)} = \frac{3}{36} = \frac{1}{12} \)
 - \(P(A_3) = \frac{n(A_3)}{n(S)} = \frac{15}{36} = \frac{5}{12} \)

Contoh 7.4 Mengambil Satu Bola

Terdapat suatu kotak yang berisikan 3 bola berwarna merah, 5 bola berwarna hijau, 7 bola berwarna biru. Jika kamu mengambil satu bola tentukan

a. Peluang terambil bola berwarna merah.

b. Peluang terambil bola berwarna hijau.

c. Peluang terambil bukan bola merah.
Alternatif Penyelesaian:
Dari soal diperoleh \(n(S) = 3 + 5 + 7 = 15 \).

a. Terdapat 3 bola berwarna merah maka
 \[
P(M) = \text{peluang terambil bola berwarna merah} = \frac{3}{15} = \frac{1}{5}
 \]
 b. Terdapat 5 bola berwarna hijau maka
 \[
P(H) = \text{peluang terambil bola berwarna hijau} = \frac{5}{15} = \frac{1}{3}
 \]
 c. Terdapat 12 bola yang tidak berwarna merah maka
 \[
P(M') = \text{peluang terambil bukan bola berwarna merah} = \frac{12}{15} = \frac{4}{5}
 \]

Gambar 1

Tahukah Kamu?

Misalkan terdapat dua kejadian yakni \(A_1 \) dan \(A_2 \). Jika kejadian \(A_1 \) tidak mempengaruhi kejadian \(A_2 \) dan juga sebaliknya maka kejadian \(A_1 \) dan \(A_2 \) disebut dengan kejadian yang saling bebas. Jika kejadian \(A_1 \) dan \(A_2 \) saling mempengaruhi maka kejadian \(A_1 \) dan \(A_2 \) disebut dengan kejadian yang tidak saling bebas.

Contoh dua kejadian saling bebas: Misalkan kamu melemparkan dadu sebanyak dua kali, kejadian diperoleh angka 1 pada pelemparan pertama dan kejadian diperoleh angka 3 pada pelemparan kedua.

Contoh dua kejadian tidak saling bebas: Misalkan terdapat kantong yang berisikan 3 kelereng merah, 2 kelereng biru dan 1 kelereng hijau. Kamu mengambil satu kelereng sebanyak dua kali tanpa pengembalian dari kantong tersebut. Kejadian diperoleh kelereng merah pada pengembalian pertama dan kejadian diperoleh kelereng hijau pada pelemparan kedua.

Jika kejadian \(A_1 \) dan \(A_2 \) merupakan kejadian saling bebas. Peluang kejadian \(A_1 \) dan \(A_2 \) terjadi adalah

\[
P(A_1 \text{ dan } A_2) = P(A_1) \times P(A_2)
\]

Secara umum jika kejadian \(A_1, A_2, \ldots, A_n \) merupakan kejadian saling bebas. Peluang kejadian \(A_1, A_2, \ldots, A_n \) terjadi adalah

\[
P(A_1 \text{ dan } A_2 \text{ dan } \ldots \text{ dan } A_n) = P(A_1) \times P(A_2) \times \ldots \times P(A_n)
\]
Misalkan kamu melemparkan dadu sebanyak dua kali, peluang kejadian diperoleh angka 1 pada pelemparan pertama dan kejadian diperoleh angka 3 pada pelemparan kedua adalah \(\frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \).

Perhatikan kembali Contoh 7.4.

b. Misalkan pada kotak tersebut ditambahkan bola berwarna biru sebanyak 5 buah. Tentukan peluang terambil bola berwarna biru? Apakah peluangnya lebih besar?

d. Dari butir 1 sampai 3, tentukan kesimpulan yang dapat kamu ambil.

Latihan 7.2 Peluang Empirik dan Peluang Teoretik

1. Lemparkan dadu sebanyak 30 kali dan catat hasilnya. Tentukan peluang empirik munculnya masing-masing mata dadu. (Jawaban bisa berbeda dengan temanmu)

2. Lemparkan dadu sebanyak 4 kali dan catat hasilnya.
 a. Tentukan peluang empirik munculnya masing-masing mata dadu. (Jawaban bisa berbeda dengan temanmu)
 b. Berdasarkan butir a, apakah terdapat peluang yang bernilai 0.
 c. Dari butir a dan b, apa yang dapat disimpulkan ketika kamu melempar dadu kurang dari 6 kali?

3. Budi melempar dua dadu secara bersamaan. Tentukan
 a. Peluang muncul angka yang berbeda.
 b. Peluang muncul angka ganjil pada kedua dadu.
 c. Peluang muncul angka genap pada kedua dadu.
 d. Peluang jumlah angka pada kedua dadu lebih dari 12.

4. Budi mengerjakan ujian yang terdiri dari 20 soal pilihan ganda, masing-masing soal terdiri dari 4 pilihan jawaban dan hanya terdapat satu jawaban yang benar.
Terdapat 5 buah soal yang tidak bisa dikerjakan dan Budi akan memilih jawaban secara acak.

a. Tentukan peluang Budi menjawab 5 soal tersebut dengan benar.

b. Tentukan peluang hanya 4 soal tersebut yang dijawab Budi dengan benar.

a. Tentukan peluang terambil kelereng merah.

b. Tentukan peluang terambil kelereng merah dan biru.

c. Tentukan peluang terambil kelereng bukan biru.

6. Perhatikan kembali soal nomor 5.

 Tentukan banyaknya kelereng warna merah yang perlu ditambahkan agar peluang terambil kelereng merah tidak berubah.

b. Jika ditambahkan kelereng merah dan hijau masing-masing sebanyak lima.
 Tentukan banyaknya kelereng warna biru yang perlu ditambahkan agar peluang terambil kelereng biru tidak berubah.

c. Jika ditambahkan kelereng merah dan biru masing-masing sebanyak lima.
 Tentukan banyaknya kelereng warna hijau yang perlu ditambahkan agar peluang terambil kelereng hijau tidak berubah.

\[P(A_1 \text{ dan } A_2) = P(A_1) \times P(A_2) \]

\[= \frac{2}{9} \times \frac{3}{8} = \frac{6}{72} = \frac{1}{12} \]

dengan:

- \(P(A_1)\) = peluang diperoleh kelereng merah.
- \(P(A_2)\) = peluang diperoleh kelereng hijau.

Tentukan kesalahan yang dilakukan Budi.

8. Terdapat kantong yang berisi 12 bola: tiga berwarna merah, empat berwarna hijau, dan lima berwarna biru. Misalkan kamu melakukan mengambil satu bola pengambilan dengan pengembalian sebanyak dua kali. Tentukan peluang:
a. Terambil bola merah pada pengambilan pertama dan kedua.

b. Terambil bola merah pada pengambilan pertama dan bola hijau pada pengambilan kedua.

c. Terambil bola hijau pada pengambilan pertama dan kedua.

d. Terambil bola merah pada pengambilan pertama dan bukan bola biru pada pengambilan kedua.

9. Ana dan Budi bermain suit sebanyak dua kali. Tentukan peluang:
 a. Ana menang dua kali.
 b. Budi menang dua kali.
 c. Ana menang pada suit pertama dan tidak kalah pada suit kedua.

10. Terdapat dua macam dadu. Dadu pertama berwarna merah dan yang lain berwarna biru. Dua dadu tersebut akan dilemparkan secara bersamaan. Tentukan peluang:
 a. Angka yang muncul pada dadu merah lebih besar dari angka yang muncul pada dadu biru.
 b. Angka yang muncul pada dadu merah merupakan dua kali lipat angka yang muncul pada dadu biru.
 c. Angka yang muncul pada dadu merah merupakan faktor/pembagi dari angka yang muncul pada dadu biru.
1. Terdapat kode yang terdiri dari empat karakter. Tiga karakter pertama merupakan angka dan karakter terakhir merupakan huruf kapital. Tentukan banyaknya password yang dapat dipilih.

2. Pak Donny tinggal di kota A dan akan bepergian ke kota B. Pak Donny tidak langsung menuju kota B karena harus menjemput temannya di kota C. Terdapat 4 pilihan jalur dari kota A menuju kota C dan terdapat 5 pilihan jalur dari kota C menuju kota B. Tentukan banyaknya pilihan jalur dari kota A menuju kota B.

 a. Tentukan berapa banyak kemungkinan dua huruf tersebut.
 b. Tentukan peluang Wina memasukkan password yang benar pada percobaan pertama.

Soal nomor 4, 5 dan 6 berdasarkan cerita berikut.

5. Tentukan peluang Ana mendapatkan giliran pertama.

6. Tentukan peluang Ani mendapatkan giliran setelah Ane.

 a. Tentukan peluang kamu menjawab benar.
 b. Apakah mengeliminasi pilihan A dan D mempengaruhi peluang kamu menjawab dengan benar?

8. Budi mengerjakan suatu ujian yang terdiri dari 20 soal pilihan ganda. Tiap soal terdiri atas pilihan A, B, C dan D. Ketika waktu pengerjaan habis, tersisa 5 soal
yang belum dikerjakan. Budi memutuskan untuk menjawab 5 soal tersebut
dengan menebak. Tentukan peluang jawaban Budi semuanya benar.

9. Diketahui satu set kartu bridge yang berisi 52 kartu. Dari kartu-kartu tersebut,
akan diambil satu buah kartu secara acak. Tentukan peluang terambilnya:
a. Kartu As
b. Kartu berwarna merah
c. Kartu bergambar hati
d. Kartu bernomor 5
e. Kartu bergambar raja

10. Suatu lomba melukis di SMP Ceria diikuti oleh siswa kelas VII sampai dengan
kelas IX. Berikut adalah banyak siswa yang mengikuti lomba tersebut berdasarkan
tingkatan kelas
- 15 siswa kelas VII
- 17 siswa kelas VIII
- 18 siswa kelas IX
Jika pada lomba tersebut akan dipilih satu peserta yang menjadi juara utama,
berapa peluang siswa kelas VIII akan menjadi juara utama?

11. Dua puluh lima tiket diberi nomor dari 1 sampai dengan 25. Setiap tiket diambil
secara acak. Jika Restu akan mengambil satu tiket secara acak, tentukan peluang
Restu untuk mendapatkan tiket dengan nomor kelipatan 4.

12. Sebuah uang koin dilemparkan sebanyak 3 kali. Berapakah peluang sisi angka
muncul tepat 2 kali?

13. Sebuah dadu dilemparkan sebanyak tiga kali. Tentukan peluang angka-angka
yang muncul adalah barisan naik.
Keterangan: Tiga bilangan a, b, c adalah barisan naik jika $a < b < c$.

14. Sebuah dadu dilemparkan sebanyak tiga kali. Tentukan peluang angka-angka
yang muncul adalah barisan turun.
Keterangan: Tiga bilangan a, b, c adalah barisan turun jika $a > b > c$.

15. **Berpiikir kritis.** Apa yang dapat kamu simpulkan dari jawaban soal nomor 13
dan 14? Kenapa peluangnya sama?
Untuk soal nomor 15 sampai 19 perhatikan kalimat berikut.
Terdapat tiga dadu yang berwarna merah, hijau dan biru. Tiga dadu tersebut
dilemparkan secara bersamaan.

16. Tentukan peluang angka yang muncul pada dadu merah ditambah dengan angka
yang muncul pada dadu hijau sama dengan angka yang muncul pada dadu biru.
17. Tentukan peluang angka yang muncul pada dadu merah dikurangi dengan angka yang muncul pada dadu hijau sama dengan angka yang muncul pada dadu biru.

18. Tentukan peluang angka yang muncul pada dadu merah dikali dengan angka yang muncul pada dadu hijau sama dengan angka yang muncul pada dadu biru.

19. Tentukan peluang angka yang muncul pada dadu merah ditambah dengan angka yang muncul pada dadu hijau sama dengan dua kali lipat angka yang muncul pada dadu biru.

20. Tentukan peluang dari kejadian berikut:
 a. Muncul dua mata dadu yang sama ketika melemparkan dua dadu bersamaan.
 b. Muncul tiga mata dadu yang sama ketika melemparkan tiga dadu bersamaan.
 c. Muncul m mata dadu yang sama ketika melemparkan m dadu bersamaan.
Jika kamu melihat radar, kamu akan berpikir untuk apa radar tersebut. Radar (yang dalam bahasa Inggris merupakan singkatan dari Radio Detection and Ranging, yang berarti deteksi dan penjarakan radio) adalah suatu sistem gelombang elektromagnetik yang berguna untuk mendeteksi, mengukur jarak dan membuat map benda-benda seperti pesawat terbang dan berbagai kendaraan bermotor. Visualisasi yang ditampilkan oleh radar untuk menyampaikan informasi di atas adalah berupa koordinat. Yang menjadi permasalahan adalah bagaimana cara menghitung jarak dengan informasi yang telah diperoleh dari radar tersebut.

Untuk itu dalam bab ini akan dibahas mengenai cara menghitung jarak antara dua titik pada bidang kartesius.

Kata Kunci

- Titik Asal
- Sumbu-X
- Sumbu-Y
- Jarak

Kompetensi Dasar

1.1 Menghargai dan menghayati ajaran agama yang dianutnya.
2.2 Memiliki rasa ingin tahu, percaya diri dan keterkaitan pada matematika serta memiliki rasa pada daya dan kegunaan matematika yang terbentuk melalui pengalaman belajar.
3.5 Menentukan orientasi dan lokasi benda dalam koordinat kartesius serta menentukan posisi relatif terhadap acuan tertentu.

Pengalaman Belajar

1. Menggunakan bidang kartesius untuk menentukan posisi titik.
2. Menggunakan bidang kartesius untuk menentukan jarak antara dua titik.
Diagram Konsep

Bidang Kartesius

Pengantar Bidang Kartesius

Jarak Dua Titik

Di unduh dari: Bukupaket.com
Descartes dikenal sebagai Renatus Cartesius dalam literatur berbahasa Latin, merupakan seorang filsuf dan matematikawan Perancis. Ia mempersembahkan sumbangan yang paling penting yaitu penemuannya tentang geometri analitis, yang akhirnya telah terkenal sebagai pencipta “Sistem koordinat Kartesius”, yang mempengaruhi perkembangan kalkulus modern dan menyediakan jalan buat Newton menemukan Kalkulus. Ia memberikan kontribusi yang besar dalam kemajuan di bidang matematika, sehingga dia dipanggil sebagai “Bapak Matematika Modern”.

Descartes, adalah salah satu pemikir paling penting dan berpengaruh dalam sejarah barat modern. Metodennya ialah dengan meragukan semua pengetahuan yang ada, yang kemudian mengantarkannya pada kesimpulan bahwa pengetahuan yang ia kategorikan ke dalam tiga bagian dapat diragukan, yaitu yang berasal dari pengalaman inderawi dapat diragukan, fakta umum tentang dunia semisal api itu panas dan benda yang berat akan jatuh juga dapat diragukan, dan prinsip-prinsip logika dan matematika juga ia ragukan. Dari keraguan tersebut, Descrates hendak mencari pengetahuan apa yang tidak dapat diragukan yang akhirnya mengantarkannya pada premisnya Cogito Ergo Sum yang artinya “aku berpikir maka aku ada”.

Hikmah yang bisa diambil

1. Keyakinan yang sempurna dan mutlak terhadap keberadaan adanya Tuhan, dan semua obyek di dunia ini adalah ciptaan Tuhan.
2. Tidak mudah puas terhadap sesuatu yang sudah didapatkan, sehingga terus berfikir melakukan inovasi untuk menemukan sesuatu yang baru.
3. Manusia diciptakan oleh Tuhan dengan bentuk yang sempurna, oleh karena itu manusia harus menggunakan akal dan pikirannya untuk memanfaatkan lingkungan dengan sebaik-baiknya.
4. Saling membantu dan kerja sama sesama manusia agar terjadi interaksi yang positif dalam melakukan aktifitas dan belajar.
A. Pengantar Bidang Kartesius

Pertanyaan Penting

Bagaimana bisa kamu menggambarkan lokasi suatu tempat pada bidang kartesius?

Kegiatan 8.1 Bentuk Bidang Kartesius

Kerjakan dengan teman sebangkumu.

a. Siapkan dua lembar kertas berpetak

b. Berilah label pada kertas berpetak pertama dan kedua masing-masing dengan huruf \(x \) dan \(y \)

c. Di tengah-tengah kertas berpetak dengan label \(x \), buatlah garis bilangan horizontal seperti yang ditunjukkan pada gambar di bawah ini. Di tengah-tengah kertas berpetak dengan label \(y \), buatlah garis bilangan vertikal.

d. Potong garis bilangan vertikal dan tempel pada bilangan garis horizontal sehingga nol saling berimpitan dan garis horizontal dan vertikal saling tegak lurus.

Ayo Kita Amati

a. Berapa banyak daerah yang terbentuk? Beri tanda 1 s/d banyaknya daerah dengan urutannya dari kanan atas kemudian bergerak berlawanan arah jarum jam. (Daerah-daerah ini selanjutnya disebut sebagai kuadran; yaitu kuadran 1, kuadran 2, dst)

b. Gambarkan titik perpotongan antara garis vertikal dan horisonatal.

c. Jelaskan letak titik pada bagian (b) terhadap garis horisonatal.

d. Jelaskan letak titik pada bagian (b) terhadap garis vertikal.

(Titik pada bagian (b) disebut sebagai **titik asal** dan dapat ditulis sebagai **pasangan bilangan** (letak terhadap garis horisonatal, letak titik pada garis vertikal)).

Di unduh dari : Bukupaket.com
Kegiatan 8.2. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini

Kegiatan 8.2.a. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini
Langkah 1. Mulailah dari titik asal (0,0)
Langkah 2. Bergeraklah 2 satuan ke kanan
Langkah 3. Bergeraklah 3 satuan ke atas
Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (2, 3).

Kegiatan 8.2.b. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini
Langkah 1. Mulailah dari titik asal (0,0)
Langkah 2. Bergeraklah 2 satuan ke kanan
Langkah 3. Bergeraklah 3 satuan ke bawah
Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (2, -3).

Kegiatan 8.2.c. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini
Langkah 1. Mulailah dari titik asal (0,0)
Langkah 2. Bergeraklah 2 satuan ke kiri
Langkah 3. Bergeraklah 3 satuan ke atas
Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (-2, 3).
Kegiatan 8.2.d. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini

Langkah 1. Mulailah dari titik asal (0, 0)
Langkah 2. Bergeraklah 2 satuan ke kiri
Langkah 3. Bergeraklah 3 satuan ke bawah

Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (-2, -3).

Berdasarkan kegiatan di atas:

Untuk selanjutnya bilangan pertama pada pasangan bilangan untuk posisi titik di bidang cartesius dinamakan sebagai absis dan bilangan kedua dinamakan sebagai ordinat. Untuk selanjutnya garis horizontal pada bidang cartesius dinamakan sebagai sumbu-X dan garis vertikalnya dinamakan sebagai sumbu-Y.

Kegiatan 8.3 Sifat titik pada bidang kartesius terhadap kuadrannya

Kerjakan dengan teman sebangkumu. Gunakan lembaran kerjamu pada Kegiatan 8.3.

Berdasarkan kegiatan di atas, jelaskan sifat-sifat titik yang berada pada kuadran 1, kuadran 2, kuadran 3, dan kuadran 4.
Kegiatan 8.4 Menggambar Titik Pada Bidang Kartesius

Kerjakan dengan teman sebangkumu, gambar dan hubungkan titik untuk membuat bangun. Deskripsikan dan warnai gambar ketika kamu mendapatkannya.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
</tbody>
</table>

Sumber: Dokumen Kemendikbud
Gambar 8.1 Deskripsi titik koordinat

Ayo Kita Berbagi

1. Bagaimana kamu menggambarkan lokasi suatu titik pada bidang kartesius?
Buatlah pertanyaan yang memuat kata “kartesius” dan “kuadran”.

Materi Esensi

Pengantar Bidang Koordinat

Langkah menggambarkan pasangan bilangan \((a, b)\) ke bidang koordinat

Langkah 1. Mulailah dari titik asal \((0, 0)\)

Langkah 2. Jika \(a \geq 0\) maka gerakkan \(|a|\) satuan kekiri dan jika \(a < 0\) maka gerakkan \(|a|\) satuan kekanan

Langkah 3. Jika \(b \geq 0\) maka gerakkan \(|b|\) satuan keatas dan jika \(b < 0\) maka gerakkan \(|b|\) satuan kebawah

Langkah 4. Titik akhir dari Langkah 1 sampai dengan Langkah 3 merupakan posisi titik koordinat

Ide Kunci:

Bidang koordinat dibentuk oleh irisan dari garis bilangan horizontal dan vertical. Bilangan garis ini berimpitan pada di titik yang disebut titik asal dan membagi bidang kartesius kedalam empat bagian yang disebut dengan kuadran.

![Gambar 8.3 Pembagian koordinat dari bidang koordinat](https://www.bukupaket.com)

Di unduh dari: Bukupaket.com
Pasangan bilangan digunakan untuk menyatakan letak dari titik dalam bidang kartesius. Misalnya (2,3) seperti yang terlihat pada gambar diatas.

Contoh 8.1 Identifikasi Pasangan Bilangan

Pasangan bilangan yang mana yang berhubungan dengan titik C?
A(4,5) B(-4,5) C(4,-5) D(-4,-5)

![Gambar titik koordinat]

Alternatif Penyelesaian:
Diketahui : Gambar titik koordinat 8.2
Ditanya : Posisi titik C
Jawab :
Titik C adalah 4 satuan ke kanan dari titik asal dan 5 satuan kebawah. Jadi koordinat-x adalah 4 dan koordinat-y adalah -5. Jadi pasangan bilangan (4, -5) berhubungan dengan titik C. Dengan demikian jawaban yang benar adalah C.
Contoh 8.2

Menggambarkan Pasangan Bilangan

Gambarkan titik (a) \((-1, 2)\) dan (b) \((0, -4\frac{1}{2})\) pada bidang kartesius. Deskripsikan letak dari setiap titik.

Alternatif Penyelesaian:

Diketahui : titik (a) \((-1, 2)\) dan (b) \((0, -4\frac{1}{2})\)

Ditanya : Deskripsikan letak setiap titik

Jawab :

 Langkah 2. Gerakkan 1 satuan ke kiri

b. Lalu gambar titiknya. Jadi titik berada pada kuadran II.
 Langkah 1. Mulai dengan titik asal.
 Langkah 2. Gerakkan 0 satuan ke kanan
 Langkah 3. Gerakkan \(4\frac{1}{2}\) satuan ke bawah

Lalu gambar titiknya. Jadi titiknya pada sumbu-\(Y\).

Contoh 8.3

Aplikasi Kehidupan Nyata

Ayo Kita Gali Informasi

Tabel di bawah ini menunjukkan perubahan kedalaman suatu sungai tiap jam, mulai dari tengah malam hingga jam 8 pagi.

<table>
<thead>
<tr>
<th>Jam, (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kedalaman dikurangi 100 cm, (y)</td>
<td>0 cm</td>
<td>60 cm</td>
<td>70 cm</td>
<td>50 cm</td>
<td>40 cm</td>
<td>30 cm</td>
<td>20 cm</td>
<td>40 cm</td>
<td>60 cm</td>
</tr>
</tbody>
</table>

a. Gambarlah data di atas dalam suatu grafik

b. Buat tiga pengamatan dari grafik tersebut
Alternatif Penyelesaian:

Diket : Tabel di atas

Ditanya :

a. Gambarlah data di atas dalam suatu grafik

b. Buat tiga pengamatan atas grafik tersebut

Jawab :

a. Tulis data di atas menjadi pasangan bilangan yaitu (0,100),(1,160),(2,170),(3,150),(4,140),(5,130),(6,120),(7,140) dan (8,160). Gambar dan beri label untuk setiap pasangan bilangan. Kemudian hubungkan pasangan bilangan dengan garis.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{Jam Setelah Tengah Malam} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\text{Kedalaman sungai - 100(cm)} & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & & & \\
\hline
\end{array}
\]

\[
\text{Gambar 8.3 Gambar titik koordinat untuk data}
\]

b. Berikut tiga kemungkinan pengamatan:

- Kedalaman sungai berkurang dari jam 02.00 malam hingga jam 06.00 pagi
- Kedalaman sungai bertambah dari jam 00.00 sampai dengan jam 02.00 pagi dan jam 06.00 sampai dengan jam 08.00 pagi.
- Pertambahan kedalaman sungai terbesar terjadi pada 00:00 hingga 01:00 pagi.
1. Berdasarkan contoh 1 didapatkan koordinat titik C. misalkan jawabanmu adalah (a,b). Gambarkan titik-titik (a,-b), (-a,-b) dan (-a,b). Deskripsikan letak titik-titik tersebut! Buatlah garis menghubungkan titik-titik tersebut! Di koordinat manakah garis-garis tersebut memotong sumbu-\(X\) dan sumbu-\(Y\)?

2. Tabel di bawah ini menunjukkan perubahan suhu tiap jam mulai dari tengah hari hingga jam 6 malam.

<table>
<thead>
<tr>
<th>Jam setelah tengah malam, (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur, (y)</td>
<td>4°F</td>
<td>6°F</td>
<td>5°F</td>
<td>1°F</td>
<td>0°F</td>
<td>0°F</td>
<td>-6°F</td>
</tr>
</tbody>
</table>

 a. Gambarlah data di atas pada suatu grafik
 b. Buat tiga pengamatan atas grafik tersebut

Latihan 8.1 Pengantar Bidang Kartesius

1. Tiga dari Empat titik yang dinyatakan dalam koordinat berikut memiliki sifat yang sama. Tentukan titik yang memiliki sifat yang berbeda dengan yang lainnya dan berikan alasanmu!

i. \((-2, 1), (-4, 5), (2, -3)\) dan \((-1, 3)\)
 ii. \((1, 2), (-2, 4), (3, 6)\) dan \((5, 7)\)
 iii. \((1, -3), (2, -7), (5, 6)\) dan \((4, -4)\)
 iv. \((-3, -6), (-4, -7), (-5, -8)\) dan \((-1, 1)\)

2. Gambarkan dan hubungkan titik-titik di bawah ini untuk membentuk suatu bangun.

 \[
 \begin{align*}
 &1(7, 1) \\
 &2(4, -2) \\
 &3(4, -1) \\
 &4(2, -1) \\
 &5(-1, -1) \\
 &6(-1, 1) \\
 &7(-1, 3) \\
 &8(2, 3) \\
 &9(4, 3) \\
 &10(4, 4)
 \end{align*}
 \]

3. Tulis koordinat yang berhubungan terhadap titik di bawah ini

i. titik \(A\) vi. titik \(B\)
 ii. titik \(C\) vii. titik \(D\)
 iii. titik \(E\) viii. titik \(F\)
 iv. titik \(G\) ix. titik \(H\)
 v. titik \(I\) x. titik \(J\)
4. Gambarkan segi banyak dengan titik sudut yang diberikan.
 i. \(A(6, 8), B(8, 3), C(2, 1)\)
 ii. \(D(1\frac{1}{2}, 3), E(6, 6), F(5, 2)\)
 iii. \(G(\frac{1}{2}, 6), H(\frac{1}{2}, 10), J(4, 10), K(4, 6)\)
 iv. \(L(1, 5), M(1, 8), N(7, 8), P(7, 5)\)
 v. \(Q(-2, 5), R(8, 9), S(5, 5), T(8, 3), U(3,1)\)
 vi. \(V(-1, 1), W(0, 6\frac{1}{2}), X(5, 6\frac{1}{2}), Y(7, 3), Z(4, -1)\)

5. Deskripsikan kesalahan dari solusi berikut.
 i. Menyambarkan (7, 6) pada bidang kartesius, mulai dari (0, 0) dan bergerak 7 satuan kekanan dan 6 satuan keatas.
 ii. Menyambarkan (-7, -5) pada bidang kartesius, mulai dari (0, 0) dan bergerak 7 satuan kekanan dan 5 satuan kebawah.

 i. \((2, -4), (8, -4)\) iv. \((-8, -3), (6, -3)\)
 ii. \((5, 4), (5, -1)\) v. \((-5, 4), (7, 4)\)
 iii. \((-2, 1), (-2, 9)\) vi. \((-3, -3), (-3, 5)\)
7. Tentukan bentuk segiempat $ABCD$ dengan titik koordinatnya

 i. $A(0, 5), B(0, 1), C(6, 1)$ dan $D(6, 5)$

 ii. $A(0, 5), B(-2, 1), C(0, -3)$ dan $D(2, 1)$

9. Seorang anak pada pagi hari dari rumah pergi ke sekolahnya dengan bersepeda. Untuk mencapai sekolahnya dia harus bergerak ke arah tenggara sejauh 4 km kemudian ke arah timur sejauh 2 km. Pada saat pulang sekolah anak tersebut pergi ke toko buku. Untuk kesana anak tersebut harus menuju ke arah barat daya sejauh 1 km dan ke arah barat sejauh 0.5 km. Gambarlah letak dari rumah, sekolah dan toko buku pada bidang kartesius. Kemudian bagaimana caranya anak tersebut supaya tiba lagi dirumah?

10. Tabel di bawah ini menunjukkan jauhnya lari dalam kilometer pada 18 minggu untuk program latihan marathon.

Minggu	1	2	3	4	5	6	7	8	9
Total kilometer	20	40	70	90	120	150	180	210	240

Minggu	10	11	12	13	14	15	16	17	18
Total kilometer	270	310	350	390	430	470	500	530	540

Di unduh dari: Bukupaket.com
a. Tuliskan tabel untuk jarak lari selama setiap minggu latihan.
b. Tampilkan data dari bagian (a) dalam grafik
c. Buatlah tiga pengamatan grafik
d. Jelaskan pola yang ditunjukkan dalam grafik

B. Jarak

Ingat Kembali !!!
Teorema Phytagoras

Misalkan segitiga siku-siku ABC seperti yang tampak pada Gambar 8.4 dengan sisi miringnya adalah AC maka berlaku persamaan berikut

$$AC^2 = AB^2 + BC^2$$

dengan AC, AB, BC berturut-turut menyatakan panjang garis dari AC, AB dan BC.

Gambar 8.4 Segitiga siku-siku

Kegiatan 8.5 Jarak Antara Dua Titik Pada Bidang Kartesius

1. Siapkan 2 lembar kertas berpetak.
3. Tuliskan dua titik sembarang pada kertas pertama dengan syarat dua titik tersebut tidak mempunyai absis maupun ordinat yang sama, misalkan terlihat pada Gambar 8.5.
4. Gambarkan dua titik sedemikian hingga dua titik tersebut dan titik A dan B merupakan titik sudut persegi panjang (lihat Gambar 8.5).
5. Potonglah kertas berpetak tersebut dengan mengikuti gambar persegi panjang yang telah terbentuk.

Gambar 8.5 Contoh gambar di kertas pertama

Gambar 8.6 Contoh gambar di kertas kotak kedua
Berdasarkan kegiatan di atas
1. Perhatikan koordinat titik-titik sudut segitiga tersebut.
2. Geserlah segitiga pada langkah 7 dan perhatikan koordinat titik-titik sudut segitiga.

Apa yang dapat kamu analisis dari pergeseran segitiga siku-siku yang kamu lakukan pada kegiatan di atas? (Hubungkan analisismu dengan terjadinya perubahan koordinat pada tiap titik sudut segitiga siku-siku tersebut).

Berdasarkan kegiatan di atas, simpulkan rumus untuk menentukan jarak antara dua titik pada bidang kartesius.

Kegiatan 8.6 Menentukan Jarak Pada Sebuah Peta

Kerjakan dengan teman sebangkumu, setiap kotak pada peta Gambar 8.7 merepresentasikan satu kilometer.

Gambar 8.7 Peta Kota
Ayo Kita Gali
Informasi

b. Berapa jarak antara perpustakaan umum dan Alun-alun?
c. Stadion terletak 4 kilometer dari perpustakaan umum, tentukan beberapa koordinat yang mungkin untuk perpustakaan. Gambarkan koordinat tersebut.

Kegiatan 8.7
Menggambar Persegi Panjang

Ayo Kita Mencoba

Kerjakan dengan teman sebangkumu,
1. Gambar dan labelkan setiap kelompok titik pada bidang kartesius berikut.
2. Hubungkan setiap titik untuk membentuk segiempat.
3. Analisis panjang sisi-sisinya dan jenis segiempat yang terbentuk.

Kelompok titik pertama : A(2, 3), B(2, 10), C(6, 10), D(6, 3)
Kelompok titik kedua : E(-2, -6), F(2, 6), G(6, 2), H(-6, -2)

Gambar 8.8 Bidang kartesius untuk menggambar persegi
1. Bagaimana kamu menentukan jarak antara dua titik pada sebuah bidang kartesius?
2. Apakah metode yang kamu gunakan untuk menentukan jarak pada Kegiatan 8.5?
 a. Arkeolog
 b. Kapten Kapal
 c. Pilot

Silahkan Bertanya

Buatlah pertanyaan yang timbul di benak kamu tentang jarak pada bidang kartesius.

Materi Esensi

Jarak

Untuk menentukan jarak antara dua titik pada bidang koordinat dapat dilakukan dengan melakukan langkah-langkah sebagai berikut

Langkah 1: tentukan koordinat dari kedua titik tersebut, misalkan koordinat dari dua titik tersebut adalah \((x_1, y_1)\) dan \((x_2, y_2)\).

Langkah 2: Hitung jarak dari dua titik tersebut dengan menggunakan rumus berikut ini

\[
\text{jarak} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}
\]

Contoh 8.4

Jarak Dua Titik

Misalkan koordinat titik \(A\) adalah \((2, 5)\) dan koordinat titik \(B\) adalah \((8, 13)\). Hitung jarak antara titik \(A\) dan \(B\)!

Alternatif Penyelesaian:

Diketahui : koordinat titik \(A\) adalah \((2,5)\) dan koordinat titik \(B\) adalah \((8,13)\).

Ditanya : hitung jarak antara titik \(A\) dan \(B\)

Jawab :

Langkah 1: Menentukan koordinat; yaitu, didapat \((x_1, y_1) = (2,5)\) dan \((x_2, y_2) = (8, 13)\)
Langkah 2: Menggunakan rumus yaitu

\[AB = \sqrt{(2-8)^2 + (5-13)^2} \]

\[= \sqrt{(-6)^2 + (-8)^2} \]

\[= 10 \]

Jadi jarak antara titik \(A \) dan \(B \) adalah 10 satuan.

Contoh 8.5

Menentukan Keliling

Titik-titik sudut persegi panjang adalah \(A(3,5) \), \(B(3,2) \), \(C(9,2) \) dan \(D(9,5) \). Gambarkan persegi panjang pada bidang kartesius dan tentukan kelilingnya.

Alternatif Penyelesaian:

Diketahui : Titik sudut persegi panjang adalah \(A(3,5) \), \(B(3,2) \), \(C(9,2) \) dan \(D(9,5) \)

Ditanya : Gambarkan persegi panjang pada bidang kartesius dan tentukan kelilingnya.

Jawab :

Gambar persegi panjang pada bidang kartesius dapat dilihat pada gambar 4.9

Gambar 8.9 Persegi panjang pada bidang kartesius

Panjang persegi panjang adalah jarak antara \(A(3, 5) \) dan \(D(9, 5) \); yaitu, beda absis.

Panjang \(= 9 - 3 = 6 \) satuan

Lebar persegi panjang adalah jarak antara \(A(3, 5) \) dan \(B(3, 2) \); yaitu, beda koordinat-y.

Lebar \(= 5 - 2 = 3 \)satuan

Jadi keliling persegi panjang adalah \(2(6) + 2(3) = 18 \) satuan.
Contoh 8.6 Aplikasi Kehidupan Nyata

Ayo Kita Gali Informasi

Diketahui sebuah kebun binatang berbentuk trapesium. Jika kebun binatang ini digambarkan pada bidang kartesius, maka koordinat titik-titik sudutnya adalah \(A(3, 5), B(3, 2), C(9, 2),\) dan \(D(7, 5).\) Koordinat ini diukur dalam satuan dekameter. Hitunglah luas kebun binatang tersebut!

Alternatif Penyelesaian:

Diketahui : sebuah kebun binatang berbentuk trapesium. Jika kebun binatang ini digambarkan pada bidang kartesius maka koordinat dari titik-titik sudutnya adalah \(A(3, 5), B(3, 2), C(9, 2),\) dan \(D(7, 5).\)

Ditanya : Hitunglah luas kebun binatang

Jawab :

Gambar dan hubungkan titik-titik sudut pada bidang kartesius untuk membentuk sebuah trapesium. Dengan menggunakan koordinat dapat ditentukan panjang alas dan tinggi.

\[
\begin{align*}
 b_1 &= 7 - 3 = 4 \\
 b_2 &= 9 - 3 = 6 \\
 h &= 5 - 2 = 3
\end{align*}
\]

Gunakan rumus untuk luas trapesium.

\[
A = \frac{1}{2} (h)(b_1 + b_2) = \frac{1}{2} (3)(4 + 6) = 15
\]

Jadi luas kebun binatang adalah 15 dekameter persegi.

Ayo Kita Tinjau Ulang

1. Pada Contoh 8.4 bagaimana jarak antara titik \(A\) dan \(B\) jika koordinat titik \(A\) adalah \((-2, -5)\) dan koordinat titik \(B\) adalah \((5, 13)\)?

2. Pada Contoh 8.5 bagaimana luas segiempat jika titik \(C\) terletak pada koordinat \((5, 2)\)?

3. Apa yang terjadi pada luas kebun binatang pada Contoh 8.6 jika titik \(B\) diganti menjadi \((1, 2)\)?

2. Gambarkan dan beri label untuk setiap pasang titik pada bidang kartesius. Tentukan panjang garis yang menghubungkan kedua titik.
 i. $C(0, 1), D(8, 1)$
 ii. $K(5, 2), L(5, 6)$
 iii. $Q(3, 4), R(3, 9)$

3. Gambarkan dan hitung keliling segi banyak dengan titik sudut yang diberikan.
 i. $A(6, 7), B(8, 2), C(2, 0)$ (segi banyak ABC)
 ii. $D(1 \frac{1}{2}, 2), E(6, 5), F(5, 1)$ (segi banyak DEF)
 iii. $G(2 \frac{1}{2}, 4), H(2 \frac{1}{2}, 8), J(6, 8), K(6, 4)$ (segi banyak GHJK)
 iv. $L(4, 2), M(4, 5), N(10, 5), P(10, 2)$ (segi banyak LMNP)
 v. $Q(1, 4), R(11, 8), S(8, 4), T(11, 2), U(6, 0)$ (segi banyak QRSTU)
 vi. $V(3, 2), W(4, 7 \frac{1}{2}), X(9, 7 \frac{1}{2}), Y(11, 4), Z(8, 0)$ (segi banyak VWXYZ)

4. Tentukan keliling segiempat $CDEF$ dengan titik sudut yang diberikan
 i. $C(2, 1), D(2, 4), E(5, 4), F(5, 1)$
 ii. $C(2, 2), D(8, 2), E(8, 8), F(2, 8)$
 iii. $C(1, 2), D(6, 2), E(6, 5), F(1, 5)$
 iv. $C(4, 0), D(4, 9), E(9, 9), F(9, 0)$

5. Tentukan luas segi banyak dengan titik sudut yang diberikan pada soal nomor 4.

 i. (1, 2), (2, 3), (3, 5), (4, 5)
 ii. (1, 2), (2, 4), (3, 6), (4, 10)
 iii. (1, -2), (2, -4), (3, -8), (4, 16)
 iv. (1, -3), (2, -4), (-6, -6), (-11, -6)
 v. (1, 0), (2, 3), (3, 9), (4, 13)
7. Diketahui titik \(A(1, 2) \) dan \(B(7, t) \). Jika jarak antara titik \(A \) dan \(B \) adalah 10, tentukan nilai \(t \)!

8. Gambarkan segi banyak pada bidang kartesius dengan kondisi yang diberikan.
 i. Persegi dengan keliling 16 satuan panjang.
 ii. Persegi panjang dengan luas 12 satuan luas.
 iii. Persegi panjang dengan keliling 24 satuan panjang.
 iv. Segitiga dengan luas 18 satuan luas.

9. Perhatikan gambar 8.10

![Gambar 8.10 Titik-titik pada bidang kartesius](image)

Dapat dilihat pada Gambar 8.10 terdapat 3 titik. Tentukan titik keempat sehingga dapat dibuat suatu persegi panjang yang titik-titik sudutnya merupakan keempat titik tersebut!

10. Tentukan luas segiempat yang titik sudutnya diberikan sebagai berikut:
 a. \(D(1, 1), E(1, -2), F(-2, -2), G(-2, 1) \) (segiempat yang terbentuk adalah segiempat \(DEFG \))
 b. \(P(-2, 3), Q(5, 3), R(5, -1), S(-2, -1) \) (segiempat yang terbentuk adalah segiempat \(PQRS \))
 c. \(W(-3, 2), X(2, 2), Y(2, -7), Z(-3, -7) \) (segiempat yang terbentuk adalah segiempat \(WXYZ \))

Carilah peta kecamatan atau desa anda yang di dalamnya terdapat peta persawahan atau daerah yang berbentuk seperti persawahan. Kemudian gambarlah daerah tersebut pada bidang kartesius. Selanjutnya hitunglah luas daerah tersebut.

Di unduh dari : Bukupaket.com
Uji Kompetensi 8
Bidang Kartesius

1. Gambarkan segi banyak dengan titik sudut yang diberikan pada bidang kartesius.
 i. \(A(6, 2), B(7, 6), C(9, 4) \)
 ii. \(D(5, 4), E(7, 8), F(10, 8), G(8, 4) \)

2. Tiga dari Empat titik yang dinyatakan dalam koordinat berikut memiliki sifat yang sama. Tentukan titik yang memiliki sifat yang berbeda dengan yang lainnya dan berikan alasanmu!
 a. \((1, 1), (4, 16), (3, 9) \) dan \((2, 6) \)
 b. \((2, 6), (3, 8), (4, 12) \) dan \((6, 18) \)
 c. \((1, -1), (2, -1), (3, -1) \) dan \((4, 1) \)
 d. \((-1, 2), (-2, 4), (-3, 6) \) dan \((-1, 1) \)

3. Gambarkan segibanyak dengan titik sudut yang diberikan.
 a. \(A(7, 8), B(9, 3), C(3, 1) \)
 b. \(D(\frac{1}{2}, 4), E(6, 7), F(5, 3) \)
 c. \(G(\frac{1}{2}, 8), H(\frac{1}{2}, 12), J(4, 12), K(4, 8) \)
 d. \(L(4, 5), M(4, 8), N(10, 8), P(10, 5) \)
 e. \(Q(-4, 5), R(6, 9), S(3, 5), T(6, 3), U(1, 1) \)

 a. \(C(0, 2), D(9, 1) \)
 b. \(K(9, 2), L(4, 6) \)
 c. \(Q(3, 4), R(7, 9) \)

5. Tentukan keliling dan luas dari segibanyak dengan titik sudut yang diberikan.
 a. \(Q(7, 6), R(7, 10), S(11, 10), T(11, 6) \)
 b. \(W(4, 8), X(4, 16), Y(10, 16), Z(10, 8) \)

i. Rico 12 kilometer ke utara
ii. Ricky 15 kilometer ke barat
iii. Rico 8 kilometer ke selatan
iv. Ricky 17 kilometer ke timur
v. Rico 10 kilometer ke utara
vi. Ricky 5 kilometer ke barat
vii. Rico 19 kilometer ke selatan

Tuliskan perintah yang seharusnya diberikan kepada Rico dan Ricky supaya posisi akhirnya sama tetapi Ricko dan Ricky hanya melakukan tugasnya satu kali. Berapakah jarak antara tempat asal dan tempat tujuan dalam perjalanan tersebut?

8. Misalkan $ABCD$ menyatakan segiempat yang terbentuk oleh garis lurus yang menghubungkan titik A ke B, B ke C, C ke D dan D ke A. Perhatikan permasalahan berikut:

b. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((-2, -6), (6, 2), (2, 6) \) dan \((-6, -2)\). Selidikilahlah apakah \(ABCD \) merupakan persegi panjang? Jelaskan jawaban kamu.

c. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((a_1, a_2), (b_1, b_2), (c_1, c_2) \) dan \((d_1, d_2)\). Tuliskan langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa \(ABCD \) merupakan persegi panjang.

9. Misalkan \(ABCD \) menyatakan segiempat yang terbentuk oleh garis lurus yang menghubungkan titik \(A \) ke \(B \), \(B \) ke \(C \), \(C \) ke \(D \) dan \(D \) ke \(A \). Perhatikan permasalahan berikut:

a. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((-2, 0), (0, 3), (2, 0) \) dan \((0, -3)\). Selidikilah apakah \(ABCD \) merupakan belah ketupat? Jelaskan jawaban kamu.

b. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((-2, -2), (-3, 3), (2, 2) \) dan \((3, -3)\). Selidikilah apakah \(ABCD \) merupakan belah ketupat? Jelaskan jawaban kamu.

c. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((a_1, a_2), (b_1, b_2), (c_1, c_2) \) dan \((d_1, d_2)\). Tuliskan langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa \(ABCD \) merupakan belah ketupat.

10. Misalkan \(ABCD \) menyatakan segiempat yang terbentuk oleh garis lurus yang menghubungkan titik \(A \) ke \(B \), \(B \) ke \(C \), \(C \) ke \(D \) dan \(D \) ke \(A \). Perhatikan permasalahan berikut:

a. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((-2, 0), (0, 3), (2, 0) \) dan \((0, -6)\). Selidikilah apakah \(ABCD \) merupakan layang-layang? Jelaskan jawaban kamu.

b. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((-2, -2), (-3, 3), (2, 2) \) dan \((6, -6)\). Selidikilah apakah \(ABCD \) merupakan layang-layang? Jelaskan jawaban kamu.

c. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((a_1, a_2), (b_1, b_2), (c_1, c_2) \) dan \((d_1, d_2)\). Tuliskan langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa \(ABCD \) merupakan layang-layang.

11. Dua titik sudut segitiga \(ABC \) adalah \(A(-4, -1) \) dan \(B(4, -1) \). Tuliskan 4 kemungkinan koordinat titik sudut ketiga sehingga luas segitiga \(ABC \) adalah 24 satuan luas.

13. Pada pemetaan topografi kota, titik batas kota adalah $A(12, 9)$, $B(20, 9)$, $C(20, 2)$, $D(16, -3)$ dan $E(12, 2)$. Koordinat diukur dalam kilometer. Berapa luas kota itu?

14. Titik batas halaman belakang rumah adalah $W(20, 30)$, $X(20, 100)$, $Y(120, 100)$ dan $Z(60, 30)$ (koordinat diukur dalam meter). Garis XZ membagi halaman belakang menjadi dua daerah; yaitu, daerah rumput dan kebun. Luas daerah rumput lebih besar daripada daerah kebun. Berapa perbandingan antara daerah rumput dan kebun?

15. Titik sudut persegi adalah $(2, 0)$, $(2, a)$, $(6, a)$ dan $(6, 0)$. Titik sudut jajaranjeng adalah $(2, 0)$, $(3, b)$, $(7, b)$ dan $(6, 0)$. Nilai $|a|$ lebih besar daripada nilai $|b|$. Seegiempat yang mana yang memiliki luas yang lebih besar? Jelaskan alasanmu.

16. Sebutkan semua titik pada bidang kartesius yang berjarak 4 satuan dari $(3, 5)$ dan $(3, 12)$.

17. Diketahui suatu barisan koordinat $(2, 3)$, $(5, 7)$, $(-4, -5)$, $(11, 15)$, Tentukan ordinat suku ke 10 dari barisan tersebut jika absisnya adalah 42.

18. Sekolahmu berada pada koordinat $(3,-4)$; yaitu, tiga blok ke timur dan empat blok ke selatan dari pusat kota. Untuk pergi dari rumahmu ke sekolah kamu berjalan 7 blok ke barat dan 3 blok ke utara.
a. Tentukan koordinat sekolahmu.

b. Dapatkan kamu menentukan rute perjalanan untuk pergi dari rumah ke sekolah yang melewati pusat kota dengan jarak tempuh yang sama dengan jarak tempuh ketika kamu pergi dari rumah ke sekolah tanpa melewati pusat kota? Jika kamu bisa tentukan rutennya.

c. Kamu sekarang berada di pusat kota dan kamu mengambil jalur terpendek untuk pulang. Berapa perbandingan blok yang kamu tempuh ketika kamu berangkat pulang dari pusat kota dan berangkat pulang dari sekolah?

19. Adi ingin pergi ke kota A yang terletak pada koordinat $(11, 3)$ dan dari kota A dia pergi ke kota B yang terletak pada koordinat $(14, -1)$. Jika sekarang Adi berada pada koordinat $(8, 7)$ dan dia pergi ke kota A dengan kecepatan 30 satuan per jam sedangkan ke kota B dengan kecepatan 40 satuan per jam. Tentukan berapa lama waktu yang dibutuhkan Adi untuk sampai ke kota B dari posisinya sekarang? Tentukan berapa lama waktu yang dibutuhkan Adi untuk kembali ke tempat posisinya sekarang dari kota B jika kecepatan kendaraannya adalah 35 satuan per jam.

<table>
<thead>
<tr>
<th>Tahun sejak 2000, (x)</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keuntungan (juta rupiah), (y)</td>
<td>0.7</td>
<td>-0.1</td>
<td>-1.1</td>
<td>1.3</td>
<td>0.9</td>
<td>1.1</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

a. Tampilkan data dalam grafik

b. Buat tiga pengamatan atas grafik

c. Berapa total keuntungan dari 2006 hingga 2012?
1. Memodelkan suatu masalah nyata dalam persamaan linear dua variabel.
2. Menyelesaikan masalah yang dapat dimodelkan dalam sistem persamaan linear dua variabel dengan grafik.
3. Mengintepretasikan grafik dari sistem persamaan linear dua variabel untuk mengetahui sistem tersebut mempunyai penyelesaian atau tidak.
4. Menyelesaikan masalah yang dapat dimodelkan dalam sistem persamaan linear dua variabel dengan substitusi.
5. Menyelesaikan masalah yang dapat dimodelkan dalam sistem persamaan linear dua variabel dengan eliminasi.

Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00. Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00. Di jalan kemudian bertemu Al temannya dan ditanya "Berapa harga per kg mangga dan apel itu, Cha?" tetapi Ocha membelinya tanpa menanyakan harga per kg terlebih dahulu. Kira-kira bagaimana menjawab pertanyaan Al tersebut tanpa kembali ke warung buah tadi dan tanya ke pedagangnya?

Nah, masalah semacam contoh di atas dapat diselesaikan dengan memodelkan masalah dalam sistem persamaan linear dua variabel. Masih banyak lagi permasalahan yang bisa diselesaikan dengan memodelkan masalah dalam sistem persamaan linear dua variabel dan menyelesaikannya. Konsep ini akan kita pelajari kembali di Bab 9 ini.
Sistem Persamaan Linear Dua Variabel

Membuat Model
Sistem Persamaan Linear Dua Variabel (SPLDV)

Mencari Penyelesaian SPLDV

Metode Grafik
- Intrepretasi Grafik
- Dua Grafik Berpotongan
- Dua Grafik Berhimpit
- Dua Grafik Sejajar

Metode Substitusi

Metode Eliminasi
Diophantus dan Persamaan Linear Dua Variabel

Persamaan Diophantine merupakan suatu persamaan yang mempunyai solusi yang diharapkan berupa bilangan bulat. Persamaan Diophantine tidak harus berbentuk persamaan linear, bisa saja kuadrat, kubik, atau lainnya selama mempunyai solusi bilangan bulat.

Bentuk paling sederhananya diberikan oleh

$$ax + by = c$$

a, b koefisien dan c konstanta bulat yang diberikan. Penyelesaian persamaan Diophantine adalah semua pasangan bilangan bulat (x, y) yang memenuhi persamaan ini. Jika d adalah FPB dari a dan b, maka agar persamaan di atas mempunyai solusi maka d harus dapat membagi c. Terkadang dalam menentukan pasangan bilangan bulat yang memenuhi persamaan, kita harus mencoba-coba dan pandai menentukan pola dari penyelesaiannya.

Hikmah yang bisa diambil

2. Terkadang kita dihadapkan dengan masalah yang penyelesaianya tidak tunggal. Oleh karena itu, gali informasi lebih dalam untuk mendapatkan penyelesaian lainnya.
A. Memodelkan Masalah dalam Persamaan Linear Dua Variabel

Pertanyaan Penting

Bagaimana kamu dapat memodelkan suatu masalah ke dalam Persamaan Linear Dua Variabel (PLDV) atau Sistem Persamaan Linear Dua Variabel (SPLDV)?

Dalam Bab 9 buku Matematika Kelas IX ini, kamu akan mengulang kembali konsep tersebut, lebih fokusnya pada bagaimana menyelesaikan permasalahan nyata yang berkaitan dengan PLDV dan SPLDV dan menginterpretasikan apakah suatu SPLDV mempunyai penyelesaian tunggal, tak terhingga atau tidak punya penyelesaian.

Untuk itu, coba lakukan kegiatan-kegiatan berikut ini bersama temanmu.

Kegiatan 9.1 Membuat model PLDV atau SPLDV: Tinggi Lilin

Coba pikirkan masalah di bawah ini!

Di suatu daerah jaringan listrik mati hingga beberapa hari karena bencana alam, sehingga untuk penerangan mayoritas warga menggunakan lilin. Misalkan ada dua jenis lilin yaitu lilin pertama tingginya 25 cm meleleh rata-rata setinggi 1,5 cm per jam dan lilin kedua tingginya 30 cm meleleh rata-rata setinggi 2 cm per jam. Jika dinyalakan, setiap lilin akan habis setelah menyala berapa jam? Jika dinyalakan bersama-sama, kapan kedua lilin tersebut sama tinggi? Berapa tingginya?

Buatlah persamaan linear dua variabel untuk menyatakan masalah ini!

Alternatif Penyelesaian:

Misalkan:
lama waktu lilin menyala adalah \(x \) jam,
tinggi lilin pertama setelah menyala selama \(x \) jam adalah \(y_1 \) cm.
tinggi lilin kedua setelah menyala selama \(x \) jam adalah \(y_2 \) cm.
Persamaan linear untuk menyatakan tinggi lilin pertama setelah menyala selama x jam:

$$y_1 = 25 - \ldots$$

Tahukah kamu mengapa demikian? Diskusikan bersama temanmu.

Persamaan linear untuk menyatakan tinggi lilin kedua setelah menyala selama x jam:

$$y_2 = 30 - \ldots$$

Tahukah kamu mengapa demikian? Diskusikan bersama temanmu.

Penyelesaian masalah ini akan dibahas pada Subbab berikutnya.

Ayo Kita Mencoba

Kegiatan 9.2 Membuat model PLDV atau SPLDV: Bisnis Rumah Kost

Coba pikirkan masalah di bawah ini!

Bu Parti membuka bisnis rumah kost. Biaya untuk mendirikan 5 kamar kos yang bu Parti keluarkan sebesar Rp63.000.000,00. Biaya pembayaran listrik dan air PDAM per bulan untuk 5 penghuni kost (tiap kamar berisi 1 orang) diperkirakan sebesar Rp250.000,00. Bu Parti menentukan tarif kost tiap kamar sebesar Rp400.000,00 per bulan. Seandainya kamar kost selalu laku (tidak ada kamar kosong), berapa lama waktu yang diperlukan bu Parti untuk balik modal (break even point)? Buatlah sistem persamaan linear dua variabel untuk masalah ini!

Alternatif Penyelesaian:

Misalkan:
lama waktu yang diperlukan adalah x bulan,
biaya yang dikeluarkan oleh Bu Parti selama x bulan adalah B, dan
pendapatan yang diterima Bu Parti selama x bulan adalah P.

Persamaan linear untuk menyatakan biaya yang dikeluarkan selama x bulan:

$$B = \ldots + 63.000.000$$

Tahukah kamu mengapa demikian? Diskusikan bersama temanmu.

Persamaan linear untuk menyatakan pendapatan yang diterima selama x bulan:

$$P = \ldots$$

Mengapa demikian? Diskusikan bersama temanmu.

Penyelesaian masalah ini akan dibahas pada Subbab berikutnya.

Kegiatan 9.3

Membuat model PLDV atau SPLDV: Harga Mangga dan Apel

Coba pikirkan masalah di bawah ini!

Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00. Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00. Di jalan kemudian ia bertemu Al temannya dan ditanya “Berapa harga per kg mangga dan apel itu, Cha?” tetapi Ocha tidak tahu karena ia membeli tanpa menanyakan harganya per kg terlebih dahulu. Kira-kira bagaimana menjawab pertanyaan Al tersebut tanpa kembali ke warung buah tadi dan tanya ke pedagangnya? Bagaimana model SPLDV untuk masalah ini?

Untuk menyelesaikan masalah di atas pertama perlu dibuat modelnya dalam suatu sistem persamaan linear dua variabel (SPLDV). Permasalahan di atas dapat diilustrasikan dalam tabel di bawah ini:

<table>
<thead>
<tr>
<th>Mangga</th>
<th>Apel</th>
<th>Harga</th>
</tr>
</thead>
<tbody>
<tr>
<td>3kg</td>
<td>4kg</td>
<td>Rp98.000,00</td>
</tr>
<tr>
<td>2kg</td>
<td>2kg</td>
<td>Rp52.000,00</td>
</tr>
</tbody>
</table>

Di unduh dari: Bukupaket.com
Alternatif Penyelesaian:

Harga 1 kg mangga belum diketahui, maka dapat kita misalkan:

harga 1 kg mangga = \(x \) rupiah.

Harga 1 kg apel juga belum diketahui, maka dapat kita misalkan

harga 1 kg apel = \(y \) rupiah.

\[
harga\ 3\ kg\ mangga\ +\ harga\ 4\ kg\ apel\ =\ Rp98.000,00\quad \rightarrow \quad \ldots\ x\ +\ \ldots\ y\ =\ 98.000\\
harga\ 2\ kg\ mangga\ +\ harga\ 2\ kg\ apel\ =\ Rp52.000,00\quad \rightarrow \quad \ldots\ x\ +\ \ldots\ y\ =\ 52.000
\]

Tahukah kamu mengapa demikian? Diskusikan bersama temanmu.

Penyelesaian masalah ini akan dibahas pada Subbab berikutnya.

Kegiatan 9.4

Membuat model PLDV atau SPLDV: Tinggi Badan Si Kembar

Coba pikirkan masalah di bawah ini!

Yudi dan Yuda adalah saudara kembar yang mempunyai tinggi badan yang sama. Keempat balok pada gambar di samping ini kongruen. (perhatikan gambar). Berapa tinggi badan si kembar? Nyatakan masalah tersebut dalam persamaan linear!

Alternatif Penyelesaian:

Misalkan:

tinggi Yudi dan Yuda adalah \(h \) cm

panjang balok adalah \(x \) cm

\(x \) cm

\[\text{Sumber: Dokumen Kemdikbud}\]
tinggi balok adalah \(y \text{ cm} \)

\[y \text{ cm} \]

Lihat gambar sebelah kiri (Yudi), tinggi badan Yudi dapat dinyatakan dengan persamaan:

\[h - \ldots + \ldots = 172 \quad \Rightarrow \quad h = - \ldots - \ldots + 172 \quad \ldots (i) \]

Lihat gambar sebelah kiri (Yuda), tinggi badan Yuda dapat dinyatakan dengan persamaan:

\[h - \ldots + \ldots = 187 \quad \Rightarrow \quad h = - \ldots - \ldots + 187 \quad \ldots (ii) \]

Penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Ayo Kita Mencoba

Materi Esensi

Memodelkan Masalah dalam PLDV atau SPLDV

Persamaan Linear dua Variabel (PLDV) adalah persamaan yang terdiri dari dua besaran yang belum diketahui (variabel) dan derajat tertinggi suku-sukunya adalah satu (linear). Kumpulan dari dua atau lebih Persamaan Linear dua Variabel (PLDV) disebut Sistem Persamaan Linear dua Variabel (SPLDV).

Suatu masalah tertentu dapat diselesaikan dengan SPLDV dengan terlebih dulu memodelkan masalah tersebut dalam SPLDV.

Langkah-langkah memodelkan suatu masalah menjadi PLDV atau SPLDV:

Langkah 1:
Baca dan pahami masalahnya dengan baik. Identifikasi dua besaran yang belum diketahui dan harus dicari.

Langkah 2:
Nyatakan dua besaran tersebut dengan variabel \(x \) dan \(y \) (boleh juga menggunakan huruf selain \(x \) dan \(y \)).

Langkah 3:
Nyatakan besaran lainnya pada permasalahan yang diberikan dalam bentuk \(x \) dan \(y \).
Contoh:

Perhatikan masalah di bawah ini

Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00. Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00. Berapa harga mangga dan apel itu per kg?

Langkah 1:

Baca dan pahami masalahnya dengan baik. Identifikasi dua besaran yang belum diketahui dan harus dicari.

Besaran yang belum diketahui dan harus dicari adalah:

- Harga mangga per kg
- Harga mangga per kg

Langkah 2:

Nyatakan dua besaran tersebut dengan variabel x dan y (boleh juga menggunakan huruf selain x dan y).

Misalkan:

- Harga mangga per kg = x
- Harga mangga per kg = y

Langkah 3:

Nyatakan besaran lainnya (permasalahan yang diberikan) dalam bentuk x dan y.

“Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00”

Kalimat pertama dari masalah di atas dapat dinyatakan dengan model matematika (dalam hal ini persamaan linear dua variabel) sebagai berikut:

\[3x + 4y = 98.000\] \(\text{... (i)}\)

“Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00”

Kalimat pertama dari masalah di atas dapat dinyatakan dengan model matematika (dalam hal ini persamaan linear dua variabel) sebagai berikut:

\[2x + 2y = 52.000\] \(\text{... (ii)}\)

SPLDV untuk masalah di atas adalah sebagai berikut:

\[
\begin{align*}
3x + 4y &= 98.000 \\
2x + 2y &= 52.000
\end{align*}
\]

SPLDV

Permasalahan di atas dapat diselesaikan dengan mencari pernyelesaian SPLDV tersebut.
Contoh 9.1 Tebak Angka (1)

Dua angka jumlahnya 197. Selisih kedua angka itu adalah 109. Berapakah angka-angka tersebut?

Nyatakan kondisi tersebut dalam Sistem Persamaan Linear Dua Variabel (SPLDV) terlebih dulu!

Alternatif Penyelesaian:

Langkah 1:
Baca dan pahami masalahnya dengan baik. Identifikasi dua besaran yang belum diketahui dan harus dicari.

Besaran yang belum diketahui dan harus dicari adalah:
- Angka pertama dan
- Angka kedua

Langkah 2:
Nyatakan dua besaran tersebut dengan variabel x dan y (boleh juga menggunakan huruf selain x dan y).

Misalkan:
- Angka pertama (yang lebih besar) adalah x
- Angka kedua adalah y

Langkah 3:
Nyatakan besaran lainnya (permamasalahan yang diberikan) dalam bentuk x dan y.

Dua buah bilangan jumlahnya 197 $\rightarrow x + y = 197$
Selisihnya adalah 109 $\rightarrow x - y = 109$

Jadi, masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

$$\begin{align*}
x + y &= 197 \\
x - y &= 109
\end{align*}$$

SPLDV

Lebih lanjut, penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Ayo Kita Mencoba

Contoh 9.2
Tebak Angka (2)

Alternatif Penyelesaian:

Langkah 1:
Besaran yang belum diketahui dan harus dicari adalah:
suatu angka puluhan
• angka pertama
• angka kedua

Langkah 2:
Misalkan
digit pertama (angka puluhan) adalah \(y \)
digit kedua (angka satuan) adalah \(x \)

Langkah 3:
Bilangan puluhan itu adalah

\[
\begin{array}{c|c}
 y & x \\
\end{array}
\]
bilangan itu adalah \(10y + x \)

“jumlah dua digit bilangan itu adalah 9” \(\Rightarrow y + x = 9 \) ... (i)

\[
\begin{array}{c|c}
 y & x \\
\end{array}
\]
Jika ditukar urutannya menjadi \(\begin{array}{c|c}
 x & y \\
\end{array} \)

“Angka itu dikali 9” dapat ditulis dengan \(\Rightarrow 9(10y + x) \)
“Dua kali angka itu jika bilangan dua digit itu ditukar urutannya”
dapat ditulis dengan \(\Rightarrow 2(10x + y) \)

sehingga,

“Angka itu dikalikan 9 sama dengan dua kali bilangan itu jika bilangan dua digit itu ditukar urutannya” dapat ditulis dengan \(\Rightarrow 9(10y + x) = 2(10x + y) \)

\[
90y + 9x = 20x + 2y
\]
\[
90y - 2y + 9x - 20x = 0
\]
\[
88y - 11x = 0 \) ... (ii)
Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

\[
\begin{align*}
 y + x &= 9 \\
 88y - 11x &= 0
\end{align*}
\]

SPLDV

Lebih lanjut, penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Ayo Kita Mencoba

Contoh 9.3 Usia Ayah dan Anaknya

Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika. Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika. Berapa usia Ika dan ayahnya sekarang? Nyatakan permasalahan tersebut dalam Sistem Persamaan Linear Dua Variabel (SPLDV) terlebih dulu!

Alternatif Penyelesaian:

Langkah 1:
Besaran yang belum diketahui dan harus dicari adalah:
- usia ayah Ika sekarang
- usia Ika sekarang

Langkah 2:
Misalkan
Usia ayah Ika sekarang adalah \(x \)
Usia Ika sekarang adalah \(y \)

Langkah 3:
usia ayah Ika sepuluh tahun lalu adalah \(x - 10 \)
usia Ika sepuluh tahun lalu adalah \(y - 10 \)

“Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika” dapat dinyatakan dengan:

\[
\begin{align*}
 x - 10 &= 4(y - 10) \\
 x - 10 &= 4y - 40
\end{align*}
\]
usia ayah Ika enam tahun yang akan datang adalah \(x + 6 \)
usia Ika enam tahun yang akan datang adalah \(y + 6 \)

“\(\text{Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika} \)” dapat dinyatakan dengan:

\[
\begin{align*}
x + 6 &= 2(y + 6) \\
x + 6 &= 2y + 12 \\
x - 2y &= 12 - 6 \\
x - 2y &= 6
\end{align*}
\]

Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

\[
\begin{align*}
x - 4y &= -30 \\
x - 2y &= 6
\end{align*}
\]

SPLDV

Lebih lanjut, penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Ayo Kita Mencoba

Latihan 9.1

Memodelkan Masalah dalam PLDV atau SPLDV

Nyatakan permasalahan berikut ini dalam Persamaan Linear Dua Variabel atau Sistem Persamaan Linear Dua Variabel.

1. Jumlah dua bilangan cacah adalah 1100, sedangkan selisih kedua bilangan itu adalah 722. Berapakah bilangan itu masing-masing?

2. Harga 4 ekor ayam dan 5 ekor bebek adalah Rp530.000,00, sedangkan harga 3 ekor bebek dan 2 ekor ayam adalah Rp300.000,00. Berapa harga seekor bebek?
3. Paul mentraktir temannya untuk minum kopi dan makan kue di suatu tempat karena. Ia membeli 5 cangkir kopi dan 4 porsi kue dengan harga Rp220.000,00. Di kesempatan yang lain ia membeli lagi 2 cangkir kopi dan 2 porsi kue yang sama dengan harga Rp94.000,00. Berapa harga secangkir kopi?

4. Memberi Sumbangan
 Fahim dan Hafidz ingin menyumbang korban banjir dengan uang tabungannya. Jumlah uang Fahim dan uang Hafidz yang mau disumbangkan adalah Rp220.000,00. Jika uang Fahim Rp80.000,00 lebih sedikit dari uang Hafidz. Berapakah uang Fahim?

5. Luas Persegipanjang
 Luas suatu persegipanjang akan berkurang sebesar 80 cm2 jika panjangnya dikurangi 5 cm dan lebarnya ditambah 2 cm. Jika panjangnya ditambah 10 cm dan lebarnya dikurangi 5 cm, luasnya bertambah sebesar 50 cm2. Berapa ukuran persegipanjang itu mula-mula?

6. Bunga
 Rani dan Sari membeli bunga untuk hadiah adik-adik kelasnya yang diwisuda. Rani membeli 4 tangkai mawar dan 6 tangkai tulip dengan harga Rp242.000,00. Sari membeli 8 tangkai mawar dan 2 tangkai tulip yang sama di toko bunga yang sama Rp214.000,00. Berapa harga setangkai tulip?

7. Perbandingan Usia
 Perbandingan usia Neni dan Wati empat tahun lalu adalah 5 : 7. Perbandingan usia Neni dan Watia delapan tahun yang akan datang adalah 4 : 5. Berapa usia mereka masing-masing saat ini?

8. Berpikir Kritis
 Suatu pekerjaan dapat menyelesaikan oleh 8 orang laki-laki dan 12 orang perempuan dalam waktu 10 hari. Sedangkan jika dikerjakan oleh 6 orang laki-laki dan 8 orang perempuan pekerjaan itu selesai dalam waktu 14 hari. Berapa waktu yang diperlukan untuk menyelesaikan pekerjaan itu jika dikerjakan oleh:
 a. seorang laki-laki saja?
 b. Seorang perempuan saja?
9. **Berpikir Kritis**

Ina mempunyai toko sepatu. Untuk jenis sepatu tertentu, jika Ina menjual 2 pasang sepatu lebih banyak ia memperoleh jumlah uang yang sama. Harga jual setiap pasang sepatu adalah Rp 20.000,00 lebih murah dari harga jual normalnya. Jika Ina menjual sepatu 2 pasang lebih sedikit ia juga memperoleh jumlah uang yang sama, harga jual setiap pasang sepatu Rp 40.000,00 lebih mahal dari harga jual normalnya.

a. Berapa pasang sepatu yang dijual Ina untuk jenis tersebut?

b. Berapa harga jual normal sepasang sepatu itu?

10. **Berpikir Kritis**

Lala dan Lili bersepakat untuk memanjangkan rambutnya hingga beberapa tahun mendatang. Tabel di bawah ini menunjukkan panjang rambut mereka pada bulan yang berbeda:

<table>
<thead>
<tr>
<th>Bulan ke-</th>
<th>Panjang Rambut (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lala</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
</tr>
</tbody>
</table>

Suatu saat apakah panjang rambut mereka akan bisa sama panjang? Jika iya, pada bulan ke berapa hal itu terjadi? Berapa panjang rambut mereka ketika sama panjang?

B. Menyelesaikan Model SPLDV dari suatu Permasalahan

Pertanyaan Penting

Bagaimana kamu menyelesaikan model Persamaan Linear Dua Variabel (PLDV) atau Sistem Persamaan Linear Dua Variabel (SPLDV) dari suatu permasalahan nyata?

Untuk itu coba lakukan kegiatan-kegiatan berikut ini bersama temanmu.
Kegiatan 9.5

Menyelesaikan SPLDV dengan Grafik: Tinggi

Coba pikirkan masalah di bawah ini!

Di suatu daerah jaringan listrik mati hingga beberapa hari karena bencana alam, sehingga untuk penerangan mayoritas warga menggunakan lilin. Misalkan ada dua jenis lilin yaitu lilin pertama tingginya 25 cm meleleh rata-rata setinggi 1,5 cm per jam dan lilin kedua tingginya 30 cm meleleh rata-rata setinggi 2 cm per jam. Jika dinyalakan, masing-masing lilin akan habis setelah menyala berapa jam? Jika dinyalakan bersama-sama, kapan kedua lilin tersebut sama tinggi? Berapa tingginya? Selesaikan model SPLDV yang sudah kamu buat di Kegiatan 1 Sub Bab 9.A.

Alternatif Penyelesaian:

Misalkan:

lama waktu lilin menyala adalah \(x \) jam,
inggi lilin pertama setelah menyala selama \(x \) jam adalah \(y_1 \)
inggi lilin kedua setelah menyala selama \(x \) jam adalah \(y_2 \)

Pada Kegiatan 9.5 Sub Bab 9.A kamu sudah menyusun SPLDV untuk menyatakan tinggi lilin pertama dan lilin kedua setelah menyala selama \(x \) jam, yaitu

\[
\begin{align*}
y_1 &= \ldots \quad \text{... (i)} \\
y_2 &= \ldots \quad \text{... (ii)}
\end{align*}
\]

Gambarlah grafik dari persamaan linear (i) dan (ii) pada kertas berpetak dengan terlebih dulu mengisi tabel di bawah ini:

Untuk grafik persamaan (i) yaitu

\[
y_1 = \ldots
\]

\[
\begin{array}{c|c|c}
x & 0 & \ldots \\
\hline
y_1 & \ldots & 0
\end{array}
\]

Untuk grafik persamaan (ii) yaitu

\[
y_2 = \ldots
\]

\[
\begin{array}{c|c|c}
x & 0 & \ldots \\
\hline
y_2 & \ldots & 0
\end{array}
\]
Berdasarkan grafik yang kamu buat, diketahui bahwa:
Titik potong grafik y_1 pada sumbu X adalah $x =$
Artinya lilin pertama akan habis setelah menyala selama ... jam.
Titik potong grafik y_2 pada sumbu X adalah $x = ...
Artinya lilin kedua akan habis setelah menyala selama ... jam.
Penyelesaian SPLDV tersebut adalah titik perpotongan antara kedua grafik tersebut, yaitu (...,
Artinya lilin pertama dan kedua akan sama tinggi setelah menyala bersama-sama selama ... jam, yaitu dengan tinggi lilin ... cm.

Apakah setiap SPLDV mempunyai penyelesaian?
Berapa banyak penyelesaian yang mungkin dari suatu SPLDV?
Dapatkah hal itu dilihat dari grafik penyelesaiannya?
Dapatkah dilihat dari koefisien-koefisien variabel dan konstanta dari kedua persamaan dalam SPLDV yang diberikan?
Coba kamu selidiki bersama kelompokmu.
Silakan mencari informasi mengenai hal ini dari sumber yang lain.

Kegiatan 9.6 Menyelesaikan SPLDV: Bisnis Rumah Kost

Coba pikirkan masalah di bawah ini!
Bu Parti membuka bisnis rumah kost. Biaya untuk mendirikan 5 kamar kos yang
bu Parti keluarkan sebesar Rp63.000.000,00. Biaya pembayaran listrik dan air
PDAM per bulan untuk 5 penghuni kost (tiap kamar berisi 1 orang) diperkirakan
sebesar Rp250.000,00. Bu Parti menentukan tarif kost tiap kamar sebesar
Rp400.000,00 per bulan. Seandainya kamar kost selalu laku (tidak ada kamar
kosong), berapa lama waktu yang diperlukan bu Parti untuk balik modal (break
even point)? (Selesaikan model SPLDV yang sudah kamu buat di Kegiatan 2 Sub
Bab 9.A)

Alternatif Penyelesaian:
Misalkan:
lama waktu yang diperlukan adalah x bulan,
biaya yang dikeluarkan oleh bu Parti selama \(x \) bulan adalah \(B \) rupiah, dan pendapatan yang diterima bu Parti selama \(x \) bulan adalah \(P \) rupiah.

Pada Kegiatan 9.6 Sub Bab 9.A kamu sudah menyusun PLDV untuk menyatakan biaya yang dikeluarkan oleh bu Parti dan pendapatan yang diterima bu Parti selama \(x \) bulan, yaitu

\[
y_1 = B = ... \quad (i)
\]

\[
y_2 = P = ... \quad (ii)
\]

Gambarlah grafik dari persamaan linear (i) dan (ii) pada kertas berpetak dengan terlebih dulu mengisi tabel di bawah ini:

Untuk grafik persamaan (i) yaitu \(y_1 = ... \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>

Untuk grafik persamaan (ii) yaitu \(y_2 = ... \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_2)</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Berdasarkan grafik yang kamu buat, diperoleh bahwa:

Penyelesaian SPLDV tersebut adalah titik perpotongan antara kedua grafik tersebut, yaitu (..., ...) Artinya biaya dan pendapatan yang diterima bu Parti sama besar (break even poin) pada bulan ke

Coba selesaikan masalah tersebut dengan metode substitusi. Apakah lebih mudah?

Kegiatan 9.7

Menyelesaikan SPLDV: Harga mangga dan apel

Coba pikirkan masalah di bawah ini!

Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00. Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00. Di jalan kemudian ia bertemu Al temannya dan ditanya “Berapa harga per kg mangga dan apel itu, Cha?” tetapi Ocha
tidak tahu karena ia membeli tanpa menanyakan harganya per kg terlebih dahulu. Kira-kira bagaimana menjawab pertanyaan Al tersebut tanpa kembali ke warung buah tadi dan tanya ke pedagangnya? Bagaimana model SPLDV untuk masalah ini?

Untuk menyelesaikan masalah di atas pertama perlu dibuat modelnya dalam suatu sistem persamaan linear dua variabel (SPLDV). Permasalahan di atas dapat diilustrasikan dalam tabel di bawah ini:

<table>
<thead>
<tr>
<th>Mangga</th>
<th>Apel</th>
<th>Harga</th>
</tr>
</thead>
<tbody>
<tr>
<td>3kg</td>
<td>4kg</td>
<td>Rp98.000,00</td>
</tr>
<tr>
<td>2kg</td>
<td>2kg</td>
<td>Rp52.000,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rp ...</td>
</tr>
</tbody>
</table>

Alternatif Penyelesaian:

Harga 1 kg mangga belum diketahui, maka dapat kita misalkan:

harga 1 kg mangga = x rupiah.

Harga 1 kg apel juga belum diketahui, maka dapat kita misalkan

harga 1 kg apel = y rupiah.

Pada Kegiatan 3 di Sub Bab 9A kamu sudah membuat model SPLDV untuk masalah ini sebagai berikut:

harga 3 kg mangga + harga 4 kg apel = Rp98.000,00 → ... x + ... y = 98.000 (i)

harga 2 kg mangga + harga 2 kg apel = Rp52.000,00 → ... x + ... y = 52.000 (ii)
Langkah 1:
Pilih salah satu persamaan dan nyatakan salah satu variabel dalam variabel lainnya yaitu x dalam bentuk y (atau y dalam bentuk x)

Misalkan pilih persamaan (i)

\[... x + ... y = 98.000 \]
\[... x = 98.000 - ... y \]
\[x = \frac{(98.000 - ... y)}{...} \quad (iii) \]

Langkah 2:
Subsitusikan hasil Langkah 1 yaitu persamaan (iii) ke persamaan (ii)

\[... x + ... y = 52.000 \]
\[\times \frac{98.000 - ... y}{...} + ... y = 52.000 \]

Langkah 3:
Sederhanakan persamaan yang diperoleh pada Langkah 2 dan dapatkan nilai y (atau x) dengan persamaan tersebut.

\[... \times \frac{98.000 - ... y}{...} + ... y = 52.000 \]
\[- ... \times \frac{y}{...} + ... y = 52.000 - ... \times \frac{98.000}{...} \]
\[... y = ... \]
\[y = ... \]

Langkah 4:
Substitusikan nilai $y = ...$ yang sudah diperoleh pada Langkah 3 ke persamaan yang diperoleh dari Langkah 1 dan selesaikan untuk mendapatkan nilai variabel x

\[x = \frac{98.000 - ... y}{...} \]
\[x = ... \]

Langkah 5:
Periksa kembali nilai x dan y yang sudah diperoleh dengan menstubsitusikan nilai x dan y ke dalam persamaan semula yaitu persamaan (i) dan (ii).

\[x = ... \text{ dan } y = ... \]
\[... x + ... y = 98.000 \rightarrow ... \times ... + ... \times ... = 98.000 \quad (\text{benar/salah?}) \]
\[... x + ... y = 52.000 \rightarrow ... \times ... + ... \times ... = 52.000 \quad (\text{benar/salah?}) \]
Jika nilai x dan y memenuhi persamaan (i) dan (ii), maka (x, y) adalah penyelesaian SPLDV tersebut.

Coba selesaikan masalah di atas dengan metode grafik.

Coba pikirkan masalah di bawah ini!
Yudi dan Yuda adalah saudara kembar yang mempunyai tinggi badan yang sama. Keempat balok pada gambar di bawah ini kongruen. (perhatikan gambar). Berapa tinggi badan si kembar? Nyatakan masalah tersebut dalam persamaan linear!

Alternatif Penyelesaian:
Misalkan:
tinggi Yudi dan Yuda adalah h cm
panjang balok adalah x cm

\[
\begin{align*}
\text{tinggi balok adalah } & y \text{ cm} \\
\end{align*}
\]

Lihat gambar sebelah kiri (Yudi), tinggi badan Yudi dapat dinyatakan dengan persamaan:
\[
\begin{align*}
h - \ldots + \ldots &= 172 \quad \rightarrow \quad h = \ldots - \ldots + 172 &\quad \ldots (i) \\
\end{align*}
\]
Lihat gambar sebelah kiri (Yuda), tinggi badan Yuda dapat dinyatakan dengan persamaan:
\[
\begin{align*}
h - \ldots + \ldots &= 187 \quad \rightarrow \quad h = \ldots - \ldots + 187 &\quad \ldots (ii) \\
\end{align*}
\]
Jumlahkan persamaan (i) dan (ii),
\[\begin{align*}
 h &= \ldots - \ldots + 172 \\
 h &= \ldots - \ldots + 187 \\
 2h &= \ldots \\
 h &= \ldots
\end{align*} \]
Jadi, tinggi Yudi dan Yuda adalah \ldots cm.

Coba selesaikan masalah di atas dengan metode grafik atau metode substitusi.

Materi Esensi

Menyelesaikan Sistem Persamaan Linear Dua Variabel

Bentuk umum SPLDV:
\[\begin{align*}
 a_1x + b_1y &= c_1 \\
 a_2x + b_2y &= c_2
\end{align*} \] ...

Langkah-langkah penyelesaian SPLDV dengan metode grafik

Langkah 1:
Gambarlah bidang koordinat kartesius.

Langkah 2:
Gambarlah grafik untuk persamaan (i) dan (ii) dengan terlebih dulu mengisi tabel seperti di bawah ini

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>c_1/b_1</td>
</tr>
</tbody>
</table>

Diperoleh titik potong grafik \(a_1x + b_1y = c_1 \) pada sumbu y yaitu \((0, c_1/b_1)\) dan titik potong pada sumbu \(X\) yaitu \((c_1/a_1, 0)\)

Plot kedua titik tersebut pada bidang koordinat dan hubungkan kedua titik itu sehingga terbentuk garis lurus untuk persamaan (i)
Grafik 2: \(a_2 x + b_2 y = c_2 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(c_2/a_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
<td>(c_2/a_2)</td>
</tr>
<tr>
<td>(y)</td>
<td>(c_2/b_2)</td>
<td>0</td>
</tr>
</tbody>
</table>

Diperoleh titik potong grafik \(a_2 x + b_2 y = c_2 \) pada sumbu y yaitu \((0, c_2/b_2) \) dan titik potong pada sumbu X yaitu \((c_2/a_2, 0) \)

Plot kedua titik tersebut pada bidang koordinat dan hubungkan kedua titik itu sehingga terbentuk garis lurus untuk persamaan (ii)

Langkah 3:
Perkirakan titik potong kedua grafik yang dihasilkan pada Langkah 2. Titik potong tersebut adalah penyelesaian SPLDV itu.

Langkah 4:
Periksa kembali nilai \(x \) dan \(y \) yang sudah diperoleh dengan menstutisubstitusikan nilai \(x \) dan \(y \) ke dalam persamaan semula yaitu persamaan (i) dan (ii).
Jika nilai \(x \) dan \(y \) memenuhi persamaan (i) dan (ii), maka \((x, y) \) adalah penyelesaian SPLDV tersebut.

Penyelesaian secara grafik tidak selalu menghasilkan penyelesaian yang tepat, tergantung pada ketepatan dalam menggambarkan grafiknya.

1. SPLDV mempunyai penyelesaian tunggal (keda grafik berpotongan di 1 titik)

 Contoh:

 - \(2x + y = 14 \)
 - \(2x - y = 6 \)
2. SPLDV mempunyai penyelesaian sebanyak tak hingga (kedua grafik berimpit)

Contoh:

\[2x - y = -5 \]
\[6x - 3y = -15 \]

3. SPLDV tidak mempunyai penyelesaian (kedua grafik sejajar)

Contoh:

\[2x - y = -5 \]
\[6x - 3y = 3 \]

Langkah-langkah penyelesaian SPLDV dengan metode substitusi

Langkah 1:
Pilih salah satu persamaan dan nyatakan salah satu variabel dalam variabel lainnya yaitu \(x \) dalam bentuk \(y \) (atau \(y \) dalam bentuk \(x \))

Langkah 2:
Subsitusikan hasil Langkah 1 ke persamaan lainnya

Langkah 3:
Sederetikan persamaan yang diperoleh pada Langkah 2 dan dapatkan nilai \(x \) (atau \(y \)) dengan persamaan tersebut.
Langkah 4:
Substitusikan nilai \(x \) (atau \(y \)) yang sudah diperoleh pada Langkah 3 ke persamaan yang diperoleh dari Langkah 1 dan selesaikan untuk mendapatkan nilai variabel \(y \) (atau \(x \)).

Langkah 5:
Periksa kembali nilai \(x \) dan \(y \) yang sudah diperoleh dengan menstsubstitusikan nilai \(x \) dan \(y \) ke dalam persamaan semula yaitu persamaan (i) dan (ii).
Jika nilai \(x \) dan \(y \) memenuhi persamaan (i) dan (ii), maka \((x, y) \) adalah penyelesaian SPLDV tersebut.

Langkah-langkah penyelesaian SPLDV dengan metode eliminasi

Langkah 1:
Tulis kedua persamaan dalam bentuk \(ax + by = c \).

Langkah 2:
Jika pada kedua persamaan koefisien dari salah satu variabel misal \(x \) (atau \(y \)) belum sama, maka samakanlah dengan mengalikan persamaan dengan bilangan yang sesuai.

Langkah 3:
Jumlahkan atau kurangkan kedua persamaan yang diperoleh pada Langkah 2 untuk memperoleh persamaan dalam satu variabel yaitu \(y \) (atau \(x \)) dan selesaikan untuk mendapatkan nilai variabel tersebut.

Langkah 4:
Substitusikan nilai \(y \) (atau \(x \)) yang sudah diperoleh pada Langkah 3 ke salah satu persamaan (i) atau (ii) dan dapatkan nilai variabel \(x \) (atau \(y \)).

Langkah 5:
Periksa kembali nilai \(x \) dan \(y \) yang sudah diperoleh dengan menstsubstitusikan nilai \(x \) dan \(y \) ke dalam persamaan semula yaitu persamaan (i) dan (ii).
Jika nilai \(x \) dan \(y \) memenuhi persamaan (i) dan (ii), maka \((x, y) \) adalah penyelesaian SPLDV tersebut.

Contoh 9.4
Tebak Angka (1)

Dua buah angka jumlahnya 80. Selisih kedua bilangan itu adalah 30. Berapa angka itu masing-masing?

Alternatif Penyelesaian:

Misalkan:
angka pertama (yang lebih besar) adalah \(x \)
angka kedua adalah \(y \)
Dua buah angka jumlahnya 80 → \(x + y = 80 \) → \(y = 80 - x \)

selisihnya adalah 30 → \(x - y = 30 \) → \(y = x - 30 \)

Gambarlah grafik untuk persamaan (i) dan (ii) dengan terlebih dulu mengisi tabel seperti di bawah ini

Grafik 1: \(y = 80 - x \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(0)</th>
<th>(80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(80)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Diperoleh titik potong grafik \(y = 80 - x \) pada sumbu y yaitu \((0, 80)\) dan titik potong pada sumbu X yaitu \((80, 0)\)

Grafik 2: \(y = x - 30 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(0)</th>
<th>(30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(-30)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Diperoleh titik potong grafik \(y = x - 30 \) pada sumbu y yaitu \((0, -30)\) dan titik potong pada sumbu X yaitu \((30, 0)\)

Dari grafik di atas dapat dilihat bahwa penyelesaiannya adalah \(x = 65 \) dan \(y = 25 \)

Jadi, bilangan yang dimaksud adalah 65 dan 25.
Contoh 9.5
Tebak Angka (2)

Jumlah dua angka (digit) dari suatu angka puluhan adalah 9. Angka itu dikalikan 9 sama dengan dua kali bilangan itu jika angka dua angka itu ditukar urutannya. Berapakah angka tersebut?

Alternatif Penyelesaian:

Misalkan

angka kedua (angka satuan) adalah \(x\)

angka pertama (angka puluhan) adalah \(y\)

bilangan itu adalah \(10y + x\)

“jumlah dua digit bilangan itu adalah 9” \(\rightarrow y + x = 9 \quad ... (i)\)

\[
\begin{array}{c|c}
\hline
y & x \\
\hline
\end{array}
\]

Jika ditukar urutannya menjadi \(\rightarrow \)

\[
\begin{array}{c|c}
\hline
x & y \\
\hline
\end{array}
\]

“Angka itu dikali 9" dapat ditulis dengan \(\rightarrow 9(10y + x)\)

“Dua kali bilangan itu jika bilangan dua digit itu ditukar urutannya”

dapat ditulis dengan \(\rightarrow 2(10x + y)\)

sehingga,

“Angka itu dikalikan 9 sama dengan dua kali angka itu jika bilangan dua digit itu ditukar urutannya”

dapat ditulis dengan \(\rightarrow 9(10y + x) = 2(10x + y)\)

\[
\begin{align*}
90y + 9x &= 20x + 2y \\
90y - 2y + 9x - 20x &= 0 \\
88y - 11x &= 0 \quad ... (ii)
\end{align*}
\]

Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

\[
\begin{align*}
y + x &= 9 \\
88y - 11x &= 0
\end{align*}
\]

\[
\begin{array}{c}
\text{SPLDV}
\end{array}
\]

SPLDV di atas akan diselesaikan dengan metode substitusi

\(y + x = 9 \quad \rightarrow \quad y = 9 - x\)

Substitusikan \(y = 9 - x\) ke persamaan (ii)

\[
\begin{align*}
88y - 11x &= 0 \\
88(9 - x) - 11x &= 0 \\
792 - 88x - 11x &= 0 \\
792 - 99x &= 0
\end{align*}
\]
\[-99x = -792\]
\[\frac{-99x}{-99} = \frac{-792}{-99}\]
\[x = 8\]
Substitusikan \(x = 8\) ke persamaan \(y = 9 - x\)
\[y = 9 - x\]
\[y = 9 - 8\]
\[y = 1\]
Jadi, bilangan itu adalah 18. (coba periksa, apakah \(18 \times 9 = 2 \times 81\)?)

Ayo Kita Mencoba

Coba selesaikan dengan metode grafik atau metode eliminasi.

Contoh 9.6

Usia Ayah dan Anaknya

Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika. Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika. Berapa usia Ika dan ayahnya sekarang? Nyatakan permasalahan tersebut dalam Sistem Persamaan Linear Dua Variabel (SPLDV) terlebih dulu!

Alternatif Penyelesaian:

Langkah 1:
Besaran yang belum diketahui dan harus dicari adalah:
- usia ayah Ika sekarang
- usia Ika sekarang

Langkah 2:
Misalkan
Usia ayah Ika sekarang adalah \(x\)
Usia Ika sekarang adalah \(y\)

Langkah 3:
usia ayah Ika sepuluh tahun lalu adalah \(x - 10\)
usia Ika sepuluh tahun lalu adalah \(y - 10\)

“Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika” dapat dinyatakan dengan:
\[x - 10 = 4(y - 10) \]
\[x - 10 = 4y - 40 \]
\[x - 4y = 40 + 10 \]
\[x - 4y = -30 \quad \text{...(i)} \]

Usia ayah Ika enam tahun yang akan datang adalah \(x + 6 \)

Usia Ika enam tahun yang akan datang adalah \(y + 6 \)

"Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika" dapat dinyatakan dengan:

\[x + 6 = 2(y + 6) \]
\[x + 6 = 2y + 12 \]
\[x - 2y = 12 - 6 \]
\[x - 2y = 6 \quad \text{...(ii)} \]

Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

\[
\begin{align*}
 x - 4y &= -30 \\
 x - 2y &= 6
\end{align*}
\]

\[\text{SPLDV} \]

karena koefisien \(x \) pada SPLDV di atas sudah sama, akan lebih efisien jika SPLDV tersebut diselesaikan dengan metode eliminasi. (variabel \(x \) dapat dieliminasi dengan mengurangkan kedua persamaan tersebut.

\[\begin{align*}
 x - 4y &= -30 \\
 x - 2y &= 6
\end{align*} \]
\[-2y = -36 \]
\[y = 18 \]

Substitusikan \(y = 18 \) ke salah satu persamaan di atas, misalnya persamaan (ii)

\[x - 2y = 6 \quad \rightarrow \quad x - 2(18) = 6 \]
\[x - 36 = 6 \]
\[x = 6 + 36 \]
\[x = 42 \]

Jadi, usia Ika adalah 18 tahun dan ayahnya adalah 42 tahun.

\[\text{Ayo Kita Mencoba} \]

Coba selesaikan dengan metode substitusi atau metode grafik.
Menyelesaikan Masalah yang Berkaitan dengan SPLDV

Selesaikan Masalah yang berkaitan dengan Sistem Persamaan Linear Dua Variabel berikut.

1. Jumlah dua bilangan cacah adalah 1100, sedangkan selisih kedua bilangan itu adalah 722. Berapakah bilangan itu masing-masing?

2. Harga 4 ekor ayam dan 5 ekor bebek adalah $530.000,00, sedangkan harga 3 ekor bebek dan 2 ekor ayam adalah $300.000,00. Berapa harga seekor bebek?

3. Paul mentraktir temannya untuk minum kopi dan makan kue di suatu tempat karena ia membeli 5 cangkir kopi dan 4 porsi kue dengan harga Rp220.000,00. Di kesempatan yang lain ia membeli lagi 2 cangkir kopi dan 2 porsi kue yang sama dengan harga Rp94.000,00. Berapa harga secangkir kopi?

4. Memberi Sumbangan
 Fahim dan Hafidz ingin menyumbang korban banjir dengan uang tabungannya. Jumlah uang Fahim dan uang Hafidz yang mau disumbangkan adalah Rp220.000,00. Jika uang Fahim Rp80.000,00 lebih sedikit dari uang Hafidz. Berapakah uang Fahim?

5. Luas Persegi Panjang
 Luas suatu persegi panjang akan berkurang sebesar 80 cm2 jika panjangnya dikurangi 5 cm dan lebarnya ditambah 2 cm. Jika panjangnya ditambah 10 cm dan lebarnya dikurangi 5 cm, luasnya bertambah sebesar 50 cm2. Berapa ukuran persegi panjang itu mulaimula?

6. Bunga
 Rani dan Sari membeli bunga untuk hadiah adik-adik kelasnya yang diwisuda. Rani membeli 4 tangkai mawar dan 6 tangkai tulip dengan harga Rp242.000,00. Sari membeli 8 tangkai mawar dan 2 tangkai tulip yang sama di toko bunga yang sama Rp214.000,00. Berapa harga setangkai tulip?
7. **Perbandingan Usia**
Perbandingan usia Neni dan Wati empat tahun lalu adalah 5 : 7. Perbandingan usia Neni dan Wati delapan tahun yang akan datang adalah 4 : 5. Berapa usia mereka masing-masing saat ini?

8. **Berpihik Kritis**
Suatu pekerjaan dapat menyelesaikan oleh 8 orang laki-laki dan 12 orang perempuan dalam waktu 10 hari. Sedangkan jika dikerjakan oleh 6 orang laki-laki dan 8 orang perempuan pekerjaan itu selesai dalam waktu 14 hari. Berapa waktu yang diperlukan untuk menyelesaikan pekerjaan itu jika dikerjakan oleh:
 a. seorang laki-laki saja?
 b. Seorang perempuan saja?

9. **Berpihik Kritis**
Ina mempunyai toko sepatu. Untuk jenis sepatu tertentu, jika Ina menjual 2 pasang sepatu lebih banyak ia memperoleh jumlah uang yang sama. Harga jual setiap pasang sepatu adalah Rp. 20.000,00 lebih murah dari harga jual normalnya. Jika Ina menjual sepatu 2 pasang lebih sedikit ia juga memperoleh jumlah uang yang sama, harga jual setiap pasang sepatu Rp. 40.000,00 lebih mahal dari harga jual normalnya.
 a. Berapa pasang sepatu yang dijual Ina untuk jenis tersebut?
 b. Berapa harga jual normal sepasang sepatu itu?

10. **Berpihik Kritis**
Lala dan Lili bersepakat untuk memanjangkan rambutnya hingga beberapa tahun mendatang. Tabel di bawah ini menunjukkan panjang rambut mereka pada bulan yang berbeda:

<table>
<thead>
<tr>
<th>Bulan ke-</th>
<th>Panjang Rambut (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lala</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
</tr>
</tbody>
</table>

Suatu saat apakah panjang rambut mereka akan bisa sama panjang? Jika iya, pada bulan ke berapa hal itu terjadi? Berapa panjang rambut mereka ketika sama panjang?
Selesaikan masalah di bawah ini bersama temanmu.

Suatu toko baju menjual paket kaos. Harga kaos paket “We Love Indonesia” tertera seperti tabel di bawah ini:

<table>
<thead>
<tr>
<th>Warna</th>
<th>Harga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merah</td>
<td>Rp215.000,00</td>
</tr>
<tr>
<td>Hijau</td>
<td>Rp215.000,00</td>
</tr>
<tr>
<td>Ungu</td>
<td>Rp220.000,00</td>
</tr>
<tr>
<td>Kuning</td>
<td>Rp210.000,00</td>
</tr>
<tr>
<td>Biru</td>
<td>Rp280.000,00</td>
</tr>
<tr>
<td>Putih</td>
<td>Rp290.000,00</td>
</tr>
<tr>
<td>Oranye</td>
<td>Rp290.000,00</td>
</tr>
</tbody>
</table>

Jika membeli secara paket akan diberikan diskon sebesar 20%. Kaos dapat dibeli secara terpisah, namun jika beli secara terpisah tidak ada diskon. Berapa harga masing-masing kaos jika dibeli secara terpisah (eceran)?

Paparkan cara atau strategi yang digunakan serta penyelesaiannya secara sistematis dalam powerpoint dan presentasikan di kelas.

Sumber: Dokumen Kemdikbud
Selesaikan masalah yang berkaitan dengan Sistem Persamaan Linear Dua Variabel berikut.

1. Pada suatu tempat parkir hanya terdapat mobil dan sepeda motor. Seorang penjaga parkir mengamati tempat parkir tersebut dan diperoleh informasi:
 a. Terdapat 40 kendaraan.
 b. Banyaknya roda adalah 100
 Tentukan banyaknya mobil dan sepeda motor dalam tempat parkir tersebut.

2. Terdapat dua bilangan bulat positif yang memenuhi:
 a. Selisih kuadrat dari kedua bilangan tersebut adalah 2013.
 b. Selisih kedua bilangan tersebut adalah 33.
 Tentukan kedua bilangan tersebut.

 a. Tentukan SPLDV berdasarkan kasus diatas.
 b. Tentukan banyaknya siswa dan permen.

 a. \[2x - 3y = 4\]
 \[x + 4y = 13\]
 b. \[3x + 2y = 7\]
 \[9x + 6y = 12\]
 c. \[-2x + 5y = 3\]
 \[4x - 10y = -6\]

5. Tantangan.
 Terdapat SPLDV
 \[2x - 3y = -5\]
 \[-x + 4y = 10\]
 Tentukan bagaimana cara untuk mendapatkan nilai \(x + y\) tanpa mencari nilai \(x\) dan \(y\).
 a. Tentukan SPLDV dari kasus di atas.
 b. Tentukan perbandingan banyaknya kelereng Ani dengan banyaknya kelereng Ina mula-mula.

7. Tentukan bilangan bulat positif x, y yang memenuhi.
 \[(x - 3)(y + 5) = (x - 2)(y + 3) \]

8. Tentukan bilangan bulat yang memenuhi
 \[123x + 321y = 567 \]
 \[321x + 123y = 765 \]

10. Mufid mempunyai sebuah bilangan pecahan, kemudian dia mengatakan “jika pembilang dari pecahan milikku dikurangi dengan 2 maka nilainya menjadi \(\frac{1}{4} \). Tapi jika pembilang dari pecahanku tersebut ditambah dengan 2 maka nilainya menjadi \(\frac{1}{3} \)”. Setelah itu Mufid bertanya kepada teman-temannya, “Berapakah selisih penyebut dan pembilang dari bilangan pecahan milikku?” Bantulah teman-teman Mufid untuk menjawab pertanyaan tersebut.

12. Leo mempunyai hobi memelihara burung kenari. Ia memiliki cukup banyak burung kenari di rumahnya. Ia memasukkan burung-burung tersebut ke dalam beberapa sangkar. Jika ke dalam setiap sangkar dimasukkan 7 ekor burung, maka akan tertinggal 1 ekor burung kenari di luar. Tetapi jika Leo memasukkan 9 ekor burung ke dalam setiap sangkar, maka akan terdapat 1 buah sangkar yang tidak terisi sama sekali. Berapa banyak burung kenari yang dimiliki oleh Leo?

14. Seminggu yang lalu Aldo membeli sejumlah bolpoin dan pensil di toko alat tulis Mantap Jaya. Saat itu ia membeli 5 buah bolpoin dan 4 buah pensil. Ketika membayar di kasir, ia memberikan 3 lembar uang pecahan Rp 10.000,00 dan ia mendapatkan uang kembali sebesar Rp 2.500,00. Tiga hari kemudian ia membeli 3 buah bolpoin dan 6 buah pensil di toko yang sama sehingga Rp 25.500,00. Sekarang Aldo diberikan uang satu lembar pecahan Rp 50.000,00 oleh ibunya. Ia diminta untuk membeli beberapa buah bolpoin dan pensil dengan jumlah total 15 buah. Ada 2 pilihan yang diberikan oleh ibu, yaitu membeli 8 buah bolpoin dan 7 buah pensil atau membeli 5 buah bolpoin dan 10 buah pensil. Sisa uang kembali dari pembelian tersebut menjadi hak Aldo untuk ditabung. Jika Aldo menginginkan lebih banyak uang kembali agar bisa ditabung, pilihan manakah yang sebaiknya dipilih oleh Aldo?

19. Di dalam suatu organisasi, diketahui bahwa \(\frac{3}{5} \) bagian anggotanya merupakan perempuan. Kemudian, 10 orang anggota baru ikut mendaftar ke dalam organisasi tersebut yang terdiri atas 5 orang laki-laki dan 5 orang perempuan. Saat ini, \(\frac{3}{7} \) bagian anggotanya adalah laki-laki. Berapakah banyak seluruh anggota dalam organisasi tersebut mula-mula?

Fungsi kuadrat adalah suatu fungsi yang berbentuk \(f(x) = ax^2 + bx + c \). Grafik fungsi ini berbentuk parabola yang mempunyai nilai optimum. Dalam aplikasi dunia nyata ini sangat berguna.

1. Menentukan grafik dari fungsi kuadrat.
2. Menentukan sumbu simetri dan nilai optimum.
3. Menentukan fungsi kuadrat.
4. Menjelaskan aplikasi dari fungsi kuadrat.

Selain terkenal sebagai seorang ahli matematika yang agung, ia juga adalah astronomer dan geografer yang hebat. Berkat kehebatannya, Khwarizmi terpilih sebagai ilmuwan penting di pusat keilmuan yang paling bergengsi pada zamannya, yakni Baital-Hikmah atau House of Wisdom yang didirikan Khalifah Abbasiyah di Metropolis Intelektual World, Baghdad.

Sumber: www.edulens.org

Hikmah yang bisa diambil

1. Kita harus jeli melakukan pengamatan fenomena yang ada di sekitar kita.
2. Kita harus mau dan mampu melakukan pembuktian-pembuktian tentang fenomena alam sekitar yang merupakan bukti kekuasaan Tuhan melalui keilmuan yang diketahui manusia. Dengan demikian, kita dapat memperkuat keyakinan pada Tuhan.
3. Kita harus semangat dalam melakukan aktivitas positif yang telah direncanakan untuk memperkuat ketahanan fisik dan psikis dalam menghadapi tantangan.
A. Grafik Fungsi Kuadrat

Pertanyaan Penting

Fungsi kuadrat adalah fungsi yang berbentuk \(y = ax^2 + bx + c \), dengan \(a \neq 0 \), \(x \), \(y \in \mathbb{R} \). Fungsi kuadrat dapat pula dituliskan sebagai \(f(x) = ax^2 + bx + c \). Bagaimanakah cara menggambar fungsi kuadrat pada bidang kartesius? Apa pengaruh nilai \(a \), \(b \) dan \(c \) terhadap grafik fungsi kuadrat?

Kegiatan 10.1 Menggambar Grafik Fungsi \(y = ax^2 \)

Gambarlah grafik fungsi kuadrat yang paling sederhana, yakni ketika \(b = c = 0 \). Untuk mendapatkan grafiknya kamu dapat membuat gambar untuk beberapa nilai \(x \) dan mensubstitusikannya pada fungsi \(y = ax^2 \), misalkan untuk \(a = 1 \), \(a = -1 \) dan \(a = 2 \).

Kerjakan Kegiatan ini dengan teman sebangkumu.

Ayo Kita Gali Informasi

Untuk mendapatkan grafik suatu fungsi kuadrat, kamu terlebih dahulu harus mendapatkan beberapa titik koordinat yang dilalui oleh fungsi kuadrat tersebut. Kamu dapat mencari titik koordinat tersebut dengan mensubstitusikan untuk beberapa nilai \(x \) yang berbeda.

a. Lengkapi ketiga tabel berikut di bawah.

<table>
<thead>
<tr>
<th>(y = x^2) ((x, y))</th>
<th>(y = -x^2) ((x, y))</th>
<th>(y = 2x^2) ((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 ((-3)^2 = 9) (-3, 9)</td>
<td>-3 ((-3)^2 = -9) (-3, -9)</td>
<td>-3 (2(-3)^2 = 18) (-3, 18)</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
b. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat. (gunakan tiga warna berbeda).

c. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut (sesuai warna).

Ayo Kita Amati

Gambarkan ketiga grafik tersebut menggunakan bidang koordinat di bawah ini dan amati tiap-tiap grafik.

Ayo Kita Simpulkan

Dari Kegiatan 10.1 di atas, kesimpulan apa yang kamu peroleh?

Nilai \(a\) pada fungsi \(y = ax^2\) akan mempengaruhi bentuk grafiknya.

1. Jika \(a > 0\) maka ...
2. Jika \(a < 0\) maka ...
3. Jika \(a > 0\) dannilai \(a\) makin besar maka ...
4. Jika \(a < 0\) dan nilai \(a\) makin kecil maka ...

Di unduh dari: Bukupaket.com
Kegiatan 10.2 Menggambar Grafik Fungsi \(y = ax^2 + c \)

Pada kegiatan ini kamu akan menggambar grafik fungsi kuadrat ketika \(b = 0 \) dan \(c \neq 0 \). Kegiatan ini dibagi menjadi dua sub-kegiatan. Pada kegiatan ini kamu menggambar grafik fungsi \(y = x^2 + c \) sebanyak tiga kali, yakni untuk \(c = 0 \), \(c = 1 \) dan \(c = -1 \).

Ayo Kita Gali Informasi

a. Lengkapi ketiga tabel berikut di bawah.

<table>
<thead>
<tr>
<th>(y = x^2 + 1) (x, y)</th>
<th>(y = x^2 - 1) (x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 ((-3)^2 + 1 = 10) (3, 10)</td>
<td>-3 ((-3)^2 - 1 = 8) (3, 8)</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

b. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat.

c. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut (sesuai warna.

d. Gambarlah kembali grafik \(y = x^2 \) seperti pada Kegiatan 10.1.

Ayo Kita Amati

Gambarkan ketiga grafik tersebut menggunakan bidang koordinat di bawah ini dan amati tiap-tiap grafik.
Berdasarkan hasil pengamatanmu, lengkapi kalimat-kalimat berikut.
- Grafik fungsi \(y = x^2 \) memotong Sumbu-Y di titik koordinat (..., ...).
- Grafik fungsi \(y = x^2 + 1 \) memotong Sumbu-Y di titik koordinat (..., ...).
- Grafik fungsi \(y = x^2 - 1 \) memotong Sumbu-Y di titik koordinat (..., ...).
- Grafik fungsi \(y = x^2 + 1 \) merupakan geseran grafik \(y = x^2 \) sepanjang ... satuan ke ...
- Grafik fungsi \(y = x^2 - 1 \) merupakan geseran grafik \(y = x^2 \) sepanjang ... satuan ke ...

Ayo Kita Simpulkan

a. Nilai \(c \) pada fungsi \(y = x^2 + c \) akan mempengaruhi geseran grafik \(y = x^2 \), yaitu ...

b. Grafik fungsi \(y = x^2 + c \) memotong Sumbu-Y di titik koordinat (..., ...)

Kegiatan 10.3 Menggaris Grafik Fungsi \(y = x^2 + bx \)

Pada kegiatan ini kamu akan menggambar grafik fungsi kuadrat ketika \(c = 0 \) dan \(b \neq 0 \). Kegiatan ini dibagi menjadi tiga sub-kegiatan, yakni ketika \(b = 1 \), \(b = -1 \) dan \(b = 2 \). Pada kegiatan ini kamu akan mengenal titik puncak dari suatu grafik fungsi kuadrat. Kerjakan kegiatan ini bersama teman sebangkumu.
Lengkapi ketiga tabel berikut di bawah.

<table>
<thead>
<tr>
<th></th>
<th>$y = x^2 + 2x$</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$(-3)^2 + 2(-3) = 3$</td>
<td>(-3, 3)</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$y = x^2 - 2x$</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$(-3)^2 - 2(-3) = 15$</td>
<td>(-3, 15)</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$y = -x^2 + 2x$</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$(-3)^2 + 2(-3) = -3$</td>
<td>(-3, -3)</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

b. Tempatkan titik-titik koordinat dalam tabelpada bidang koordinat (gunakan tiga warna berbeda untuk tabel).

c. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut (sesuai warna.

d. Pada tiap-tiap tabel tentukan nilai y yang paling kecil. Apakah ada hubungannya dengan nilai b ?
Gambarkan ketiga grafik tersebut menggunakan bidang koordinat di bawah ini dan amati tiap-tiap grafik. Pada tiap-tiap grafik tentukan koordinat titik yang paling bawah (titik koordinat ini selanjutnya disebut titik puncak).

c. Ulangi kegiatan ini dengan fungsi kuadrat \(y = -x^2 + x, y = -x^2 - x, y = -x^2 + 3x \). Selanjutnya tentukan titik yang paling atas (titik koordinat ini juga disebut dengan titik puncak).

d. Pada tiap grafik tentukan suatu garis vertikal yang merupakan sumbu simetri.

1. Titik puncak adalah ...
2. Sumbu simetri adalah ...
3. Pengaruh nilai \(b \) pada grafik fungsi \(y = x^2 + bx \) adalah ...

Di unduh dari : Bukupaket.com
Buatlah pertanyaan mengenai semua kegiatan yang telah kamu kerjakan di atas.

Materi Esensi

Grafik Fungsi Kuadrat

Fungsi kuadrat merupakan fungsi yang berbentuk \(y = ax^2 + bx + c \), dengan \(a \neq 0 \). Grafik dari fungsi kuadrat menyerupai parabola, sehingga dapat dikatakan juga sebagai fungsi parabola.

Gambar Perbandingan Grafik fungsi kuadrat \(y = x^2 \), \(y = -x^2 \) dan \(y = 2x^2 \)
Nilai a pada fungsi $y = ax^2 + bx + c$ akan mempengaruhi bentuk grafiknya. Jika a positif maka grafiknya akan terbuka keatas. Sebaliknya jika a negatif maka grafiknya akan terbuka kebawah. Jika nilai a semakin besar maka grafiknya menjadi lebih “kurus”.

Garis putus-putus pada gambar di atas menerangkan sumbu simetri. Koordinat yang ditandai dengan bulatan merupakan titik puncak sedangkan koordinat yang ditandai dengan persegi merupakan titik potong dengan Sumbu-Y.

Nilai b pada grafik $y = ax^2 + bx + c$ menunjukkan dimana koordinat titik puncak dan sumbu simetri berada (titik puncak dan sumbu simetri dibahas lebih lanjut pada sub-bab selanjutnya). Jika $a > 0$ maka grafik $y = ax^2 + bx + c$ memiliki titik puncak minimum. Jika $a < 0$ maka grafik $y = ax^2 + bx + c$ memiliki titik puncak maksimum.

Nilai c pada grafik $y = ax^2 + bx + c$ menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan Sumbu-Y, yakni pada koordinat (0, c).
Contoh 10.1

Grafik Fungsi Kuadrat

Berikut ini adalah grafik lima fungsi kuadrat yang berbeda.

1. Grafik yang berwarna hitam merupakan grafik fungsi kuadrat $y = x^2 - x + 2$. Grafik $y = x^2 - x + 2$ memotong Sumbu-Y pada koordinat (0, 2) dan memiliki titik puncak minimum.

2. Grafik yang berwarna merah merupakan grafik fungsi kuadrat $y = 2x^2 - 6x + 4$. Grafik $y = 2x^2 - 6x + 4$ memotong Sumbu-Y pada koordinat (0, 4) dan memiliki titik puncak minimum.

3. Grafik yang berwarna biru merupakan grafik fungsi kuadrat $y = -2x^2 + 8$. Grafik $y = -2x^2 + 8$ memotong Sumbu-Y pada koordinat (0, 8) dan memiliki titik puncak maksimum.
4. Grafik yang berwarna merah dengan garis putus-putus merupakan grafik fungsi kuadrat \(y = x^2 - 7x + 10 \). Grafik \(y = x^2 - 7x + 10 \) memotong Sumbu-Y pada koordinat \((0, 10)\) dan memiliki titik puncak minimum.

5. Grafik yang berwarna biru dengan garis putus-putus merupakan grafik fungsi kuadrat \(y = -x^2 - 5x - 6 \). Grafik \(y = -x^2 - 5x - 6 \) memotong Sumbu-Y pada koordinat \((0, -6)\) dan memiliki titik puncak maksimum.

Ayo Kita Tinjau Ulang

1. Mengapa fungsi kuadrat \(y = ax^2 + bx + c \) disyaratkan \(a \neq 0 \), tentukan alasanmu.

2. Terdapat dua fungsi kuadrat, \(f(x) = ax^2 + bx + c \) dan \(g(x) = -f(x) = -ax^2 - bx - c \). Apa yang dapat disimpulkan dari grafik \(f(x) \) dan \(g(x) \).

Latihan 10.1 Grafik Fungsi Kuadrat

1. Gambarkan grafik fungsi kuadrat berikut.
 - a. \(y = \frac{1}{2}x^2 \)
 - b. \(y = \frac{1}{4}x^2 \)
 - c. \(y = -\frac{1}{2}x^2 \)
 - d. \(y = -\frac{1}{2}x^2 \)

2. Dari Soal 1, apa yang dapat kamu simpulkan mengenai grafik \(y = ax^2 \) dengan \(|a| < 1 \) dan \(a \neq 0 \) ?

3. Gambarkan grafik fungsi kuadrat berikut.
 - a. \(y = x^2 + 3x + 2 \)
 - b. \(y = x^2 - 3x + 2 \)
 - c. \(y = x^2 + 5x + 6 \)
 - d. \(y = x^2 - 5x + 6 \)

4. Dari Soal 3, apa yang dapat kamu simpulkan mengenai perbandingan grafik \(y = ax^2 + bx + c \) dengan \(y = ax^2 - bx + c \) ?

5. Gambarkan grafik fungsi kuadrat berikut.
 - a. \(y = x^2 + 4x + 2 \)
 - b. \(y = -x^2 + 2x + 3 \)
 - c. \(y = x^2 - 5x + 5 \)
 - d. \(y = -2x^2 + 4x + 5 \)

6. Dari soal nomor 5, tentukan titik puncak tiap-tiap grafik. Tentukan pula hubungan titik puncak grafik fungsi \(y = ax^2 + bx + c \) dengan nilai \(\frac{-b}{2a} \).
B. Sumbu Simetri dan Nilai Optimum

Pertanyaan Penting

a. Bagaimana kamu menentukan sumbu simetri grafik fungsi kuadrat?
b. Bagaimana menentukan nilai optimum fungsi kuadrat tersebut?

Kegiatan 10.4 Pergeseran Grafik Fungsi Kuadrat

1. Gambarlah grafik fungsi kuadrat di bawah ini pada bidang koordinat
 a. \(f(x) = x^2 \)
 b. \(f(x) = (x - 1)^2 \)
 c. \(f(x) = (x - 2)^2 \)
 d. \(f(x) = (x + 1)^2 \)
 e. \(f(x) = (x + 2)^2 \)

2. Gambarlah grafik fungsi kuadrat di bawah ini pada bidang koordinat
 a. \(f(x) = x^2 \)
 b. \(f(x) = x^2 + 1 \)
 c. \(f(x) = x^2 + 2 \)
 d. \(f(x) = x^2 - 1 \)
 e. \(f(x) = x^2 - 2 \)

Ayo Kita Amati

Berdasarkan kegiatan di atas, bandingkan grafik lima fungsi pada bagian (1)

Grafik \(f(x) = (x - 1)^2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh ... satuan ke ...

Di unduh dari : Bukupaket.com
Berdasarkan kegiatan di atas, maka

1. Untuk s positif maka grafik $f(x) = (x - s)^2$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh ... satuan ke ...

2. Untuk s positif maka grafik $f(x) = (x + s)^2$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh ... satuan ke ...

3. Untuk t positif maka grafik $f(x) = x^2 + t$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh ... satuan ke ...

4. Untuk t positif maka grafik $f(x) = x^2 - t$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh ... satuan ke ...

5. Untuk s dan t positif maka grafik $f(x) = (x - s)^2 + t$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh ... satuan ke ... dan dilanjutkan dengan pergeseran sejauh ... satuan ke ...

6. Untuk s dan t positif maka grafik $f(x) = (x - s)^2 - t$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh ... satuan ke ... dan dilanjutkan dengan pergeseran sejauh ... satuan ke ...
7. Untuk s dan t positif maka grafik $f(x) = (x + s)^2 + t$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh s dan dilanjutkan dengan pergeseran sejauh t.

8. Untuk s dan t positif maka grafik $f(x) = (x + s)^2 - t$ adalah pergeseran grafik fungsi $f(x) = x^2$ sejauh s dan dilanjutkan dengan pergeseran sejauh t.

Kegiatan 10.5 Menentukan Sumbu Simetri dan Nilai Optimum

Buatlah sumbu simetri untuk setiap grafik yang telah dibuat pada Kegiatan 1.

Ayo Kita Amati

Isilah tabel di bawah ini

<table>
<thead>
<tr>
<th>Fungsi</th>
<th>$f(x) = x^2$</th>
<th>$f(x) = (x - 1)^2$</th>
<th>$f(x) = (x - 2)^2$</th>
<th>$f(x) = (x + 1)^2$</th>
<th>$f(x) = (x + 2)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumbu simetri</td>
<td>$x = ...$</td>
</tr>
<tr>
<td>Nilai optimum</td>
<td>$f(...) = ...$</td>
</tr>
</tbody>
</table>

Isilah tabel di bawah ini

<table>
<thead>
<tr>
<th>Fungsi</th>
<th>$f(x) = x^2$</th>
<th>$f(x) = x^2 + 1$</th>
<th>$f(x) = x^2 + 2$</th>
<th>$f(x) = x^2 - 1$</th>
<th>$f(x) = x^2 - 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumbu simetri</td>
<td>$x = ...$</td>
</tr>
<tr>
<td>Nilai optimum</td>
<td>$f(...) = ...$</td>
</tr>
</tbody>
</table>
Berdasarkan pengamatan di atas, jawablah pertanyaan berikut ini

1. Tentukan sumbu simetri dan nilai optimum grafik fungsi \(f(x) = (x - s)^2? \)
2. Tentukan sumbu simetri dan nilai optimum grafik fungsi \(f(x) = x^2 + t? \)
3. Tentukan sumbu simetri dan nilai optimum grafik fungsi \(f(x) = (x - s)^2 + t? \)

Sumbu Simetri dan Nilai Optimum

Sumbu simetri grafik fungsi \(f(x) = ax^2 \) adalah ...

Jadi

Sumbu simetri grafik fungsi \(f(x) = a(x - s)^2 \) adalah ... dan nilai optimumnya adalah ...

Sumbu simetri grafik fungsi \(f(x) = a(x - s)^2 + t \) adalah ... dan nilai optimumnya adalah ...

Kemudian untuk

\[
\begin{align*}
f(x) &= ax^2 + bx + c = a(x^2 + \frac{b}{a}x) + c = a(x^2 + \frac{b}{a}x + \ldots) - a(\ldots) + c \\
&= a(x + \ldots)^2 - a(\ldots) + c = a(x - \ldots)^2 - a(\ldots) + c
\end{align*}
\]

didapatkan sumbu simetrinya adalah \(x = \ldots, \)

dengan nilai optimumnya adalah \(f(\ldots) = \ldots, \)

sehingga titik optimumnya adalah \((\ldots, \ldots) \)

Rumus untuk Sumbu Simetri dan Nilai Optimum

Apa rumus untuk mendapatkan sumbu simetri dan nilai optimum dari grafik fungsi \(f(x) = ax^2 + bx + c? \)
Kegiatan 10.6 Sketsa Grafik Fungsi Kuadrat

Sketsalah grafik \(f(x) = 3x^2 - 10x + 9 \) dan \(f(x) = -2x^2 + 12x - 20 \).

Ayo Kita Gali Informasi

1. Periksalah, apakah bentuk parabola grafik fungsi di atas terbuka ke atas atau ke bawah!
2. Tentukan perpotongan grafik terhadap Sumbu-X; yaitu, koordinat titik potongnya adalah \((x_1, 0) \) yang memenuhi persamaan

\[f(x_1) = 0 \]

(Perhatikan apakah persamaan tersebut mempunyai penyelesaian atau tidak, jika tidak apa yang bisa kamu simpulkan)
3. Tentukan perpotongan grafik terhadap Sumbu-Y; yaitu, koordinat titik potongnya adalah \((0, y_1) \) dengan \(y_1 \) didapatkan berdasarkan persamaan

\[y_1 = f(0) \]
4. Tentukan sumbu simetri dan nilai optimum grafik fungsi di atas.
5. Dari informasi yang didapatkan, sketsalah grafik fungsi kuadrat di atas.

Ayo Kita Berbagi

Diskusikan dengan temanmu bagaimana bentuk grafik \(f(x) = \sqrt{x} \) dan \(f(x) = -\sqrt{x} \). Bandingkan grafiknya dengan grafik persamaan kuadrat. Apa yang bisa kamu dapatkan dari analisis ini?

Ayo Kita Menanya

Buatlah pertanyaan mengenai kegiatan yang telah kamu kerjakan di atas.

Materi Esensi Menentukan Sumbu Simetri dan Titik Optimum

Fungsi kuadrat \(f(x) = ax^2 + bx + c \) mempunyai sumbu simetri

\[x = \frac{-b}{2a} \]
Dengan nilai optimumnya adalah

\[y_0 = \frac{-D}{4a} \]

Langkah-langkah mensketsa grafik fungsi kuadrat:

Langkah 1. Menentukan bentuk parabola (terbuka ke atas atau ke bawah)!

Langkah 2. Menentukan perpotongan grafik terhadap Sumbu-X; yaitu, koordinat titik potongnya adalah \((x_1, 0)\) yang memenuhi persamaan

\[f(x_1) = 0 \]

Langkah 3. Menentukan perpotongan grafik terhadap Sumbu-Y; yaitu, koordinat titik potongnya adalah \((0, y_1)\) dengan \(y_1\) didapatkan berdasarkan persamaan

\[y_1 = f(0) \]

Langkah 4. Menentukan sumbu simetri dan nilai optimum dari grafik fungsi.

Langkah 5. Mensketsa grafik fungsi kuadrat berdasarkan langkah (1), (2), (3) dan (4).

Contoh 10.2

Menentukan Sumbu Simetri dan Nilai Optimum

Tentukan sumbu simetri dan nilai optimum dari grafik fungsi \(f(x) = x^2 - 4x + \frac{1}{2}\)

Alternatif Penyelesaian:

Diketahui: fungsi kuadrat \(f(x) = x^2 - 4x + \frac{1}{2}\), didapatkan \(a = 1, b = -4,\) dan \(c = \frac{1}{2}\).

Ditanya: sumbu simetri dan titik optimum

Penyelesaian:

Persamaan sumbu simetrinya adalah

\[x = \frac{-b}{2a} = \frac{-(-4)}{2 \cdot 1} = 2 \]

Nilai optimum fungsi tersebut adalah

\[y_0 = \frac{-D}{4a} = \frac{-b^2 - 4ac}{4a} = \frac{(-4)^2 - 4 \cdot 1 \cdot \frac{1}{2}}{4 \cdot 1} = \frac{-7}{2} \]

Sehingga titik optimumnya adalah

\((x, y_0) = (2, \frac{-7}{2})\)
Contoh 10.3

Menentukan Nilai Maksimum dan Minimum

Tentukan apakah fungsi \(f(x) = -2x^2 - 12x - 17 \) mempunyai nilai maksimum atau minimum. Tentukan nilainya!

Alternatif Penyelesaian:

Diketahui : fungsi kuadrat \(f(x) = -2x^2 - 12x - 17 \)

\[a = -2, \quad b = -12 \text{ dan } c = -17. \]

Ditanya : Tentukan apakah ada nilai maksimum atau minimum. Tentukan nilai maksimum atau minimumnya!

Penyelesaian :

Karena nilai \(a = -2 < 0 \) maka parabola terbuka kebawah sehingga yang ada hanya nilai maksimum. Nilai maksimumnya adalah

\[
y_{m} = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(-12)^2 - 4(-2)(-17)}{4(-2)} = \frac{144 - 136}{-8} = 1
\]

Contoh 10.4

Sketsa Grafik

Sketsalah grafik \(f(x) = x^2 - 6x + 10 \)

Alternatif Penyelesaian:

Diketahui: fungsi kuadrat \(f(x) = x^2 - 6x + 10 \) didapat \(a = 1, \quad b = -6 \) dan \(c = 10. \)

Ditanya: Sketsa grafik

Penyelesaian:

Langkah 1. Karena \(a = 1 > 0 \) maka parabola terbuka keatas

Langkah 2. Perpotongan grafik terhadap Sumbu-\(X \)

Dihitung bahwa \(D = b^2 - 4ac = 6^2 - 4 \times 1 \times 10 = -4 < 0 \). Sehingga grafik tidak memotong Sumbu-\(X \).

Langkah 3. Perpotongan grafik terhadap Sumbu-\(Y \)

\[y_0 = f(0) = 10 \text{ yaitu pada titik } (0, 10). \]

Langkah 4. Sumbu simetri dan nilai optimum dari fungsi

Sumbu simetrinya adalah \(x = \frac{-b}{2a} \) dan nilai optimumnya didapat

\[
y_{0} = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(-6)^2 - 4(1)(10)}{4(1)} = -\frac{-4}{4} = 1
\]
1. Tentukan fungsi kuadrat \(f(x) = x^2 - 4x + c \) sedemikian hingga nilai optimumnya adalah 20.

2. Tentukan nilai \(a \) dan bentuk fungsi kuadrat \(f(x) = ax^2 + bx + 1 \) sedemikian hingga
 a. Fungsi \(f(x) \) mempunyai nilai maksimum 10 dan sumbu simetri \(x = 3 \).
 b. Fungsi \(f(x) \) mempunyai nilai minimum dengan nilai minimum -10 dan sumbu simetri \(x = 3 \).

3. Sketsalah grafik \(f(x) = -3x^2 - 10x + 9 \)
Latihan 10.2
Menentukan Sumbu Simetri dan Titik Optimum

1. Tentukan sumbu simetri grafik fungsi di bawah ini
 a. \(y = 2x^2 - 5x \)
 b. \(y = 3x^2 + 12x \)
 c. \(y = -8x^2 - 16x - 1 \)

2. Tentukan nilai optimum fungsi berikut ini
 a. \(y = -6x^2 + 24x - 19 \)
 b. \(y = \frac{2}{5}x^2 - 3x + 15 \)
 c. \(y = -\frac{3}{4}x^2 + 7x - 18 \)

3. Sketsalah grafik fungsi berikut ini
 a. \(y = 2x^2 + 9x \)
 b. \(y = 8x^2 - 16x + 6 \)

4. Diketahui suatu barisan 1, 7, 16, …. Suku ke-\(n \) dari barisan tersebut dapat dihitung dengan rumus \(U_n = an^2 + bn + c \). Tentukan suku ke 100.

5. Diketahui suatu barisan 0, -9, -12, … Suku ke-\(n \) dari barisan tersebut dapat dihitung dengan rumus \(U_n = an^2 + bn + c \). Tentukan nilai minimum dari barisan tersebut.

6. Fungsi kuadrat \(y = f(x) \) melalui titik (3, -12) dan (7, 36). Jika sumbu simetrinya \(x = 3 \), tentukan nilai minimum fungsi \(f(x) \).

7. Bila fungsi \(y = 2x^2 + 6x - m \) mempunyai nilai minimum 3 maka tentukan \(m \).

8. Dari tahun 1995 sampai 2002, banyaknya pelanggan telepon genggam \(N \) (dalam juta orang) dapat dimodelkan oleh persamaan \(N = 17,4x^2 + 36,1x + 83,3 \), dengan \(x = 0 \) merepresentasikan tahun 1995 [Sumber: Data dari 2005 Statistical Abstract of the United States, Tabel 1.372, hal. 870]. Pada tahun berapa banyaknya pelanggan mencapai nilai maksimum?

10. Selisih dua bilangan adalah 10. Jika hasil kali kedua bilangan menghasilkan nilai yang minimum, tentukan kedua bilangan tersebut.

Di unduh dari: Bukupaket.com
C. Menentukan Fungsi Kuadrat

Kamu sudah mengetahui bagaimana cara menggambar grafik suatu fungsi kuadrat. Kamu juga sudah mengetahui bagaimana mendapatkan titik puncak, titik potong dan sumbu simetri. Pada sub-bab ini kamu akan mengetahui cara untuk menentukan fungsi kuadrat dari informasi yang ada.

Pertanyaan Penting

a. Bagaimana cara menentukan fungsi kuadrat jika sudah diketahui grafiknya.

b. Bagaimana cara menentukan fungsi kuadrat jika diketahui titik puncak, titik potong atau sumbu simetri.

Kegiatan 10.7

Menentukan Fungsi Kuadrat Berdasarkan Grafiknya

Ayo Kita Gali Informasi

Gambar di samping merupakan grafik suatu fungsi kuadrat. Dapatkan kamu menentukan suatu fungsi yang grafiknya seperti gambar disamping?

a. Informasi apakah yang kamu peroleh dari grafik di samping?

b. Apakah grafik disamping memotong Sumbu-X?

c. Pada koordinat mana grafik di samping memotong Sumbu-Y.

Diskusi

Diskusikan dengan temanmu tiga pertanyaan di atas. Kemudian diskusikan pertanyaan berikut.

a. Dari jawaban tiga pertanyaan di atas apakah kamu bisa menentukan fungsi kuadrat sesuai grafik di atas?

b. Minimal berapa koordinat yang harus diketahui agar kamu bisa menentukan tepat satu fungsi kuadrat berdasarkan grafik?
Kegiatan 10.8 Menentukan Fungsi Kuadrat Berdasarkan Titik Potong Sumbu-X

Kamu sudah mengetahui bagaimana cara mendapatkan akar-akar fungsi kuadrat di Kelas 8. Diberikan fungsi kuadrat berikut:

i. $y = x^2 + 3x + 4$

ii. $y = x^2 + 4x + 4$

iii. $y = x^2 - 6x + 5$

Ayo Kita Gali Informasi

a. Tentukan akar-akar tiap-tiap fungsi kuadrat. Tentukan fungsi yang tidak memiliki akar, fungsi yang memiliki satu akar dan fungsi yang memiliki dua akar.

b. Gambarkan grafik tiap-tiap fungsi kuadrat.

c. Tentukan mana fungsi kuadrat yang tidak memotong Sumbu-X, fungsi yang memotong Sumbu-X di satu titik dan yang memotong Sumbu-X di dua titik.

d. Apa yang dapat kamu simpulkan mengenai hubungan akar-akar fungsi kuadrat dengan titik potong Sumbu-X?

Diskusi

Misalkan terdapat dua fungsi kuadrat;

$y = x^2 + 3x + 2$ dan $y = 2x^2 + 6x + 4 = 2(x^2 + 3x + 2)$

Diskusikan beberapa pertanyaan berikut.

a. Tentukan akar-akar tiap-tiap fungsi kuadrat. Apakah kedua fungsi kuadrat tersebut memiliki akar-akar yang sama?

b. Gambarkan grafik tiap-tiap fungsi kuadrat. Apakah kedua fungsi kuadrat tersebut memiliki grafik yang sama?

c. Apa yang dapat kamu simpulkan?

d. Jika diketahui akar-akarnya apakah kamu pasti selalu bisa menentukan fungsi kuadratnya?
Ayo Kita Simpulkan

Jika fungsi kuadrat \(y = ax^2 + bx + c \) memiliki akar-akar \(x = p \) dan \(x = q \) dengan \(p \neq q \) maka grafik fungsi kuadrat tersebut akan memotong Sumbu-X pada koordinat ... dan Bentuk umumnya adalah ...

Kegiatan 10.9 Menentukan Fungsi Kuadrat Dari Beberapa Informasi

Pada kegiatan ini kamu akan mempelajari dan menganalisis bagaimana cara menentukan fungsi kuadrat dari beberapa informasi. Informasinya adalah sebagai berikut:

a. Titik potong dengan Sumbu-X.
b. Titik potong dengan Sumbu-Y.
c. Titik puncak dan sumbu simetri.
d. Beberapa titik koordinat yang dilalui fungsi kuadrat tersebut.

Berdasarkan Kegiatan 1 dan 2, kamu masih belum bisa menentukan fungsi kuadrat jika hanya diketahui satu informasi dari empat informasi di atas.

1. Jika diketahui tiga koordinat berbeda

Perhatikan gambar di samping. Misalkan terdapat suatu fungsi kuadrat yang grafiknya melalui tiga koordinat berbeda, yakni (0, 1), (1, 3) dan (2, 7).

Apakah kamu bisa menentukan fungsi kuadrat berdasarkan tiga koordinat yang diketahui dan bagaimana caranya?

Perhatikan langkah-langkah berikut:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).
b. Karena melewati koordinat (0, 1), (1, 3) dan (2, 7) diperoleh \(f(0) = 3, f(1) = 3 \) dan \(f(2) = 7 \).
 - \(f(0) = a(0)^2 + b(0) + c = 1 \) \(\Rightarrow \) \(c = 1 \). Diperoleh \(f(x) = ax^2 + bx + 1 \)
 - \(f(1) = a(1)^2 + b(1) + 1 = 3 \) \(\Rightarrow \) \(a + b + 1 = 3 \).
Diperoleh persamaan

\[a + b = 2 \quad \ldots \ldots (1) \]

\[- \quad f(2) = a(2)^2 + b(2) + 1 = 7 \implies 4a + 2b + 1 = 7. \text{ Diperoleh persamaan} \]

\[4a + 2b = 6 \quad \ldots \ldots (2) \]

c. Dengan mensubstitusi \(a = 2 - b \) ke persamaan (2), diperoleh \(b = \ldots \)

d. Dari hasil diperoleh \(a = \ldots \)

e. Sehingga fungsi kuadrat yang memenuhi adalah

\[f(x) = ax^2 + bx + c = \ldots \]

Ayo Kita Simpulkan

Jika grafik fungsi kuadrat \(f(x) = ax^2 + bx + c \) melalui titik koordinat \((p, q)\) diperoleh hubungan ...

2. Jika diketahui titik potong dengan Sumbu-\(X\) dan Sumbu-\(Y\)

Perhatikan gambar di samping. Misalkan terdapat suatu grafik fungsi kuadrat yang memotong Sumbu-\(X\) di \((1, 0)\) dan \((4, 0)\). Fungsi kuadrat tersebut juga memotong Sumbu-\(Y\) di \((0, -4)\).

Apakah kamu sudah bisa menentukan fungsi kuadratnya dan bagaimana caranya?

Perhatikan langkah-langkah berikut:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Karena memotong Sumbu-\(X\) pada \((1, 0)\) dan \((4, 0)\), dapat ditulis

\[f(x) = ax^2 + bx + c = a(x - \ldots)(x - \ldots). \]

c. Karena memotong Sumbu-\(Y\) di \((0, -4)\), diperoleh \(f(0) = -4 \).

\[f(0) = a(0 - \ldots)(0 - \ldots) \]

\[-4 = a \times \ldots \]

Diperoleh \(a = \ldots \) dan fungsi kuadrat \(f(x) = ax^2 + bx + c = \ldots \)
Jika grafik fungsi kuadrat \(f(x) = ax^2 + bx + c \) memotong Sumbu-X pada titik koordinat \((p, 0)\) dan \((q, 0)\) maka fungsi kuadrat tersebut dapat dituliskan menjadi

\[
f(x) = ...\]

Jika grafik fungsi kuadrat \(f(x) = ax^2 + bx + c \) memotong Sumbu-Y pada titik koordinat \((0, r)\) maka diperoleh

\[
f(0) = ...\]

Dengan mensubstitusikan nilai \(x = 0 \) pada fungsi kuadrat \(y = ax^2 + bx + c \) diperoleh

\[
f(0) = ...\]

yang berakibat ...

3. Jika diketahui titik potong Sumbu-X dan titik puncak

Perhatikan gambar disamping. Terdapat suatu fungsi kuadrat yang memotong Sumbu-X di \((-1, 0)\). Titik puncak fungsi kuadrat tersebut berada di koordinat \((1, -4)\).

Apakah kamu sudah bisa menentukan fungsi kuadratnya dan bagaimana caranya?

Perhatikan langkah-langkah berikut:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Dari grafik disamping diperolehsumbu simetri \(x = 1 \). Berdasarkan sifat simetri, titik potong di Sumbu-X yang lain adalah hasil pencerminan kooordinat \((-1, 0)\) terhadap garis \(x = 1 \), yakni pada koordinat \(x = ... \)

c. Sehingga fungsi kuadratnya dapat dinyatakan dengan

\[
f(x) = ax^2 + bx + c = a(x + 1)(x - ...)\]

d. Karena titik puncak berada di \((1, -4)\) maka diperoleh \(f(1) = -4 \).

\[
f(1) = a(1 + 1)(1 - ...)
\]

\[-4 = a \times ...\]

diperoleh \(a = ... \) dan fungsi kuadrat \(f(x) = ... \)
Jika fungsi kuadrat \(y = ax^2 + bx + c \) memiliki titik puncak pada titik koordinat \((s, t)\) maka sumbu simetri fungsi kuadrat tersebut adalah garis \(x = ... \)

4. Jika diketahui titik potong Sumbu-Y dan titik puncak

Perhatikan gambar disamping. Terdapat suatu fungsi kuadrat yang memotong Sumbu-Y di \((0, 3)\). Titik puncak fungsi kuadrat tersebut berada di koordinat \((-2, 1)\).

Apakah kamu sudah bisa menentukan fungsi kuadratnya dan bagaimana caranya?

Perhatikan langkah-langkah berikut:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Dari grafik disamping diperoleh sumbu simetri \(x = -2 \). Berdasarkan sifat simetri, jika titik \((0, 3)\) dicerminkan terhadap garus \(x = -2 \) diperoleh koordinat ...

c. Sehingga grafik fungsi kuadrat tersebut melalui tiga titik koordinat yaitu \((0, 3), (-2, 1)\) dan ...

d. Dengan menggunakan cara seperti pada Sub-Kegiatan 3.1, diperoleh \(a = ... \), \(b = ... \) dan \(c = ... \)

e. Sehingga didapatkan fungsi kuadrat \(f(x) = ... \)

Materi Esensi: Menentukan Fungsi Kuadrat

Untuk menentukan fungsi kuadrat diperlukan beberapa informasi, diantaranya:

1. Beberapa titik koordinat yang dilalui fungsi kuadrat tersebut.
2. Titik potong fungsi kuadrat tersebut di Sumbu-X.
3. Titik potong fungsi kuadrat tersebut di Sumbu-Y.
4. Titik puncak dan sumbu simetri.
Langkah pertama untuk mendapatkannya adalah dengan memisalkan fungsi kuadrat tersebut dengan $f(x) = ax^2 + bx + c$. Berikut ini adalah langkah selanjutnya berdasarkan informasi-informasi di atas.

1. Jika diketahui beberapa titik koordinat yang lain.
 Jika fungsi kuadrat tersebut melalui koordinat (p, q), maka diperoleh $f(p) = q$.

2. Jika diketahui titik potong fungsi kuadrat tersebut di Sumbu-X.
 Jika fungsi kuadrat memotong Sumbu-X di $(p, 0)$ dan $(q, 0)$ maka fungsi kuadrat tersebut dapat dituliskan menjadi $f(x) = a(x - p)(x - q)$.

3. Jika diketahui titik potong fungsi kuadrat tersebut di Sumbu-Y.
 Jika fungsi kuadrat memotong Sumbu-Y di $(0, r)$ maka diperoleh $f(0) = r$

 Dengan mensubstitusikan nilai 0 pada $f(x)$ diperoleh
 $$f(0) = a(0)^2 + b(0) + c = c.$$

 Sehingga diperoleh $c = r$.

4. Jika diketahui titik puncak dan sumbu simetri.
 Jika fungsi kuadrat kuadrat tersebut memiliki titik puncak di (s, t) maka diperoleh sumbu simetri fungsi kuadrat tersebut adalah garis $x = s$.

Selanjutnya jika diketahui fungsi kuadrat tersebut melalui (e, d) maka dengan menggunakan sifat simetri diperoleh titik koordinat yang lain hasil pencerminan koordinat (e, d) terhadap garis $x = s$.

Contoh 10.5
Menentukan Fungsi Kuadrat I

Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat $(-1, -1), (0, 4)$ dan $(1, 5)$.

Alternatif Penyelesaian:

a. Misalkan fungsi kuadratnya adalah $f(x) = ax^2 + bx + c$.

b. Karena melalui titik koordinat $(-1, -1), (0, 4)$ dan $(1, 5)$ diperoleh $f(-1) = -1$, $f(0) = 4$ dan $f(1) = 5$.

 - $f(0) = a(0)^2 + b(0) + c = 4 \quad \Rightarrow \quad c = 4.$
Diperoleh

\[f(x) = ax^2 + bx + 4 \]

- \[f(-1) = a(-1)^2 + b(-1) + 4 = -1 \Rightarrow a - b + 4 = -1 \]. Diperoleh persamaan

\[a - b = -5 \quad (1) \]

- \[f(1) = a(1)^2 + b(1) + 4 = 5 \Rightarrow a + b + 4 = 5 \]. Diperoleh persamaan

\[a + b = 1 \quad (2) \]

Dengan menjumlahkan persamaan (1) dan (2) diperoleh

\[2a = -4 \Rightarrow a = -2 \]

Kemudian \[b = 1 - a = 1 - (-2) = 3 \].

c. Diperoleh nilai \(a = -2, b = 3 \) dan \(c = 4 \), sehingga fungsi kuadratnya adalah

\[f(x) = -2x^2 + 3x + 4. \]

Contoh 10.6

Menentukan Fungsi Kuadrat II

Tentukan fungsi kuadrat yang grafiknya memiliki titik potong Sumbu-\(X \) pada titik koordinat \((-2, 0)\) dan \((3, 0)\) serta memotong Sumbu-\(Y \) pada koordinat \((0, 3)\).

Alternatif Penyelesaian:

a. Misalkan fungsi kuadratnya adalah \[f(x) = ax^2 + bx + c. \]

b. Karena memotong Sumbu-\(X \) pada koordinat \((-2, 0)\) dan \((3, 0)\), fungsi kuadratnya dapat diubah menjadi

\[f(x) = a(x + 2)(x - 3). \]

c. Karena memotong Sumbu-\(Y \) pada koordinat \((0, 3)\) diperoleh \(f(0) = 3 \)

\[f(0) = a(0 + 2)(0 - 3) = -6a \]

Sehingga diperoleh \(-6a = 3 \Rightarrow a = -\frac{1}{2} \)

d. Diperoleh fungsi kuadrat

\[f(x) = -\frac{1}{2} (x + 2)(x - 3) = -\frac{1}{2} (x^2 - x - 6) = -\frac{1}{2} x^2 + \frac{1}{2} x^2 + 3 \]
Contoh 10.7 Menentukan Fungsi Kuadrat III

Tentukan fungsi kuadrat yang grafiknya memiliki titik puncak pada titik koordinat (-1, 3) serta memotong Sumbu-Y pada titik koordinat (0, 1).

Alternatif Penyelesaian:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Diperoleh sumbu simetri \(x = -1 \).

c. Berdasarkan sifat simetri, jika titik \((0, 3) \) dicerminkan terhadap garis \(x = -1 \) diperoleh titik koordinat \((-2, 1) \).

d. Fungsi kuadrat melalui tiga titik koordinat, yakni \((0, 1), (-1, 3) \) serta \((-2, 1) \).

e. Karena melalui titik koordinat \((0, 1), (-1, 3) \) dan \((-2, 1) \) diperoleh \(f(0) = 1, f(-1) = 3 \) dan \(f(-2) = 1 \).

- \(f(0) = a(0)^2 + b(0) + c = 1 \rightarrow c = 1 \). Diperoleh

\[
f(x) = ax^2 + bx + 1
\]

- \(f(-1) = a(-1)^2 + b(-1) + 1 = 3 \rightarrow a - b + 1 = 3 \). Diperoleh persamaan

\[
a - b = 2 \quad \text{(1)}
\]

- \(f(-2) = a(-2)^2 + b(-2) + 1 = 1 \rightarrow 4a - 2b + 1 = 1 \) Diperoleh persamaan

\[
2a - b = 0 \quad \text{(2)}
\]

Dengan mengurangi persamaan (1) dan (2) diperoleh

\[-a = 2 \rightarrow a = -2\]

Kemudian \(b = 2a = 2(-2) = -4 \).

f. Diperoleh nilai \(a = -2, b = -4 \) dan \(c = 1 \), sehingga fungsi kuadratnya adalah

\[
f(x) = -2x^2 - 4x + 1
\]
Contoh 10.8

Menentukan Fungsi Kuadrat

Tentukan fungsi kuadrat yang grafiknya memiliki sumbu simetri \(x = -\frac{1}{2} \) yang memotong Sumbu-\(X \) pada titik koordinat (2, 0) dan memotong Sumbu-\(Y \) pada koordinat (0, 2).

Alternatif Penyelesaian:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Berdasarkan sifat simetri, jika titik (2, 0) dicerminkan terhadap garis \(x = -\frac{1}{2} \) diperoleh titik koordinat (-3, 0).

c. Karena memotong Sumbu-\(X \) pada koordinat (2, 0) dan (-3, 0), fungsi kuadratnya dapat diubah menjadi

\[f(x) = a(x + 3)(x - 2). \]

d. Karena memotong Sumbu-\(Y \) pada koordinat (0, 2) diperoleh \(f(0) = 2 \)

\[f(0) = a(0 + 3)(0 - 2) = -6a \]

Sehingga diperoleh \(-6a = 2 \rightarrow a = \frac{-1}{3} \)

e. Diperoleh fungsi kuadrat

\[f(x) = \frac{-1}{3}(x + 3)(x - 2) = \frac{-1}{3}(x^2 + x - 6) = \frac{-1}{3}x^2 - \frac{1}{3}x^2 + 2 \]

Tahukah Kamu

Ketika kamu menggambar grafik fungsi linear dan grafik fungsi kuadrat (atau menggambar dua grafik fungsi kuadrat) dimungkinkan kedua grafik tersebut saling berpotongan.
Dari gambar di atas grafik fungsi linear $y = x - 1$ dan grafik fungsi kuadrat $y = x^2 - 5x + 4$ berpotongan pada dua titik koordinat, yaitu (0, 1) dan (5, 4). Sedangkan grafik fungsi kuadrat $y = x^2 - 5x + 4$ dan $y = x^2 - 4x + 2$ berpotongan pada satu titik koordinat, yaitu (2, -2).

Kamu juga dapat menentukan titik potongnya tanpa menggambar grafik. Caranya adalah dengan “menyamakannya”.

1. Titik potong grafik fungsi linear dan fungsi kuadrat.
 Fungsi linear : $y = -x + 1$, fungsi kuadrat : $y = x^2 - 5x + 4$
 Dengan menyamakan kedua fungsi di atas diperoleh
 $x^2 - 5x + 4 = x - 1$
 $x^2 - 5x + 4 - x + 1 = 0$
 $x^2 - 6x + 5 = 0$
 $(x - 1)(x - 5) = 0$
 Diperoleh $x = 1$ atau $x = 5$.
 Dari nilai x di atas kamu dapat memperoleh nilai y dengan mensubstitusikan nilai x pada salah satu fungsi.
 Untuk $x = 1$ $y = x - 1 = 1 - 1 = 0$, diperoleh titik koordinat (1, 0).
 Untuk $x = 5$ $y = x - 1 = 5 - 1 = 4$, diperoleh titik koordinat (5, 4).
 Jadi titik potongnya pada titik koordinat (1, 0) dan (3,2).

2. Titik potong dua fungsi kuadrat.
 Fungsi kuadrat $f_1(x) = x^2 - 5x + 4$ dan $f_2(x) = x^2 - 4x + 2$
Karena yang dicari titik potong maka \(f_1(x) = f_2(x) \), selanjutnya didapatkan
\[
x^2 - 5x + 4 = x^2 - 4x + 2
\]
\[
x^2 - 5x + 4 - (x^2 - 4x + 2) = 0
\]
\[
x + 2 = 0
\]
Diperoleh \(x = 2 \).
Dari nilai \(x \) di atas kamu dapat memperoleh nilai \(y \) dengan mensubstitusikan nilai \(x \) pada salah satu fungsi.
Untuk \(x = 2 \rightarrow y = x^2 - 5x + 4 = (2)^2 - 5(2) + 4 = -2 \), diperoleh titik koordinat (2, -2).
Jadi titik potongnya pada titik koordinat (2, -2).

Ayo Kita Tinjau Ulang

1. Untuk suatu bilangan bulat \(p > q > 0 \), apakah terdapat suatu fungsi kuadrat \(y = ax^2 + bx + c \) yang melalui titik koordinat (1, \(p \)) dan (1, \(q \))? Jelaskan alasanmu.

2. Untuk suatu bilangan bulat \(p > q > r > 0 \), apakah terdapat suatu fungsi kuadrat \(y = ax^2 + bx + c \) yang melalui titik koordinat (2, \(p \)), (2, \(p \)) dan (2, \(r \))? Jelaskan alasanmu.

Latihan 10.3 Menentukan Fungsi Kuadrat

1. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat (-1, 1), (0, -4), dan (1, -5).

2. Tentukan fungsi kuadrat yang grafiknya memotong Sumbu-\(X \) pada titik koordinat (4, 0) dan (-3, 0) serta melalui titik koordinat (2, -10).

3. Tentukan fungsi kuadrat yang grafiknya memotong Sumbu-\(X \) pada koordinat (-2, 0) dan memiliki titik puncak pada koordinat (2, -16).
4. Tentukan fungsi kuadrat yang grafiknya memotong Sumbu-Y pada koordinat (0, 4), melalui titik koordinat (-1, -1) dan memiliki sumbu simetri $x = 2$.

5. Tantangan. Tentukan fungsi kuadrat yang grafiknya melalui (12, 0), (0, 3) dan (0, -2).

6. Untuk suatu bilangan bulat p, tentukan fungsi kuadrat yang grafiknya melalui titik koordinat $(p, 0)$ dan $(-p, 0)$ dan $(0, p)$.

7. Tentukan semua titik potong grafik fungsi linear $y = x + 1$ dengan fungsi kuadrat $y = x^2 - 5x + 4$.

8. Tentukan semua titik potong grafik fungsi kuadrat $y = x^2 - 6x + 4$ dengan fungsi kuadrat $y = x^2 - 8x$.

9. Tantangan. Tentukan nilai a dan b agar grafik fungsi linear $y = ax + b$ memotong grafik fungsi kuadrat $y = x^2 - 4x + 2$ tepat pada satu titik koordinat yakni $(3, -1)$. (Kalau diperlukan dapat menggunakan grafik).

10. Dari fungsi kuadrat $y = 2x^2 - 12x + 16$ akan dibuat suatu segitiga. Titik-titik sudut segitiga tersebut merupakan titik potong Sumbu-X dan titik puncak. Tentukan luas segitiga tersebut.

D. Aplikasi Fungsi Kuadrat

Pada sub-bab ini kamu akan mempelajari beberapa aplikasi fungsi kuadrat dalam kehidupan sehari-hari.

Pertanyaan Penting

Bagaimana aplikasi fungsi kuadrat pada kehidupan nyata?

Kegiatan 10.5 Lompat Trampolin

Lompat trampolin adalah sebuah permainan di mana seseorang akan dilemparkan ke udara dengan menggunakan trampolin seperti yang terlihat pada gambar di bawah ini. Pada suatu hari diadakan suatu kompetisi lompat trampolin dimana dengan peserta lompatan tertinggi akan keluar menjadi pemenang. Untuk menentukan tinggi dari lompatan, panitia menyiapkan suatu alat ukur berupa penggaris dengan ukuran 5 meter yang dipasang secara vertikal disebelah trampolin sehingga tinggi dari lompatan peserta bisa dilihat dari penggaris ini. Namun dengan menggunakan
metode ini panitia mengalami masalah yaitu ketika ada peserta yang lompatannya melebihi 5 meter. Untuk menyelesaikan hal ini lakukanlah kegiatan di bawah ini sebagai simulasi.

Sumber: http://tahu-x.blogspot.com

Ayo Kita Amati

1. Siapkan penggaris berukuran 100 cm atau 30 cm.
2. Siapkan stop watch atau jam tangan atau jam dinding.
3. Siapkan koin atau benda kecil yang bisa dilempar ke atas.
4. Buatlah kelompok minimal terdiri dari tiga orang yang mana bertugas untuk melempar koin, mengamati uji coba dan mencatat.
5. Letakkan penggaris secara vertikal dan bilangan nol letakkan pada posisi di bawah.
6. Leparmlah koin atau benda kecil yang kamu siapkan dengan posisi lemparannya di titik nol pada penggaris.
7. Amati waktu yang diperlukan koin untuk mencapai tinggi 100 cm atau 30 cm (sesuaikan dengan penggaris yang kamu bawa).
8. Lakukan kegiatan ini sebanyak 10 kali dan isi tabel berikut ini.

<table>
<thead>
<tr>
<th>Percobaan ke-</th>
<th>Waktu yang diperlukan untuk mencapai 100 cm atau 30 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

Ayo Kita Mencoba

Pada teori fisika terdapat persamaan yang berhubungan dengan kegiatan di atas, yaitu:

\[h(t) = v_0 t - \frac{1}{2} gt^2 \]

dengan \(h \) menyatakan tinggi benda, \(v_0 \) menyatakan kecepatan awal atau kecepatan disaat waktu sama dengan nol, \(t \) menyatakan waktu dan \(g \) menyatakan koefisien dalam gaya gravitasi yang bernilai 9,8. Dari kegiatan di atas informasi apa saja yang bisa kamu dapat tentukan dan beri penjelasannya.

Ayo Kita Simpulkan

Tentukan hubungan antara kegiatan 1 dengan permasalahan panitia lompat trampolin di atas. Dan bagaimana pemecahan masalahnya.
Kegiatan 10.6 Membuat Balok

Seorang pengusaha es ingin membuat cetakan untuk es. Untuk itu dia menyediakan sehelai kayu berukuran 2,5 meter × 1 meter. Dengan kayu ini dia ingin membentuk cetakan berbentuk balok dengan tinggi 1 meter tanpa alas dan tutup. Sebagai pengusaha dia ingin menghasilkan es semaksimal mungkin. Selesaikan permasalahan ini dengan melakukan kegiatan berikut.

1. Siapkan kertas karton berukuran 25 cm × 10 cm
2. Buatlah balok atau kubus tanpa alas dan tutup dengan tinggi 10 cm dari kertas tersebut dengan cara melipat seperti pada contoh gambar berikut ini.

3. Hitunglah volume balok yang kamu buat
4. Lakukan kegiatan ini sebanyak sepuluh kali dengan menggunakan kertas yang sama tapi ukuran baloknya berbeda.
5. Isilah tabel berikut ini

<table>
<thead>
<tr>
<th>Balok ke-</th>
<th>Volume balok</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Dokumen Kemdikbud
Dari kesepuluh balok yang kamu buat, balok nomor berapakah yang mempunyai volume terbesar? Mungkinkah dibuat balok yang lain dengan volumenya lebih besar daripada volume balok tersebut?

Tentukan hubungan hasil dari kegiatan 2 di atas dengan kasus yang ada pada kegiatan 2 ini. Bagaimana kamu menyelesaikan kasus yang dihadapi oleh pengusaha tersebut?

Seorang pengusaha emas mendapatkan pesanan 10 lempe ng emas berbentuk segitiga sama sisi dengan ukuran sisinya adalah 10 cm. Akibat dari produksi ini, bahan untuk pembuatan emas yang dia miliki telah habis. Selanjutnya ternyata ada kabar yang mengejutkan yaitu si pembeli tidak ingin membeli emas berbentuk segitiga namun dia ingin membeli emas berbentuk persegi panjang sebanyak 10 dengan ukuran yang sama dan dia akan membayarinya dengan harga dua kali lipat dari harga sebelumnya. Karena bahannya sudah habis maka si pengusaha harus memotong emas berbentuk segitiga menjadi persegi panjang. Karena si pengusaha...
ingin mendapat keuntungan maksimal maka dia harus membuat emas berbentuk persegi panjang dengan luas maksimal. Selesaikan permasalahan ini dengan melakukan kegiatan berikut.

1. Siapkan kertas karton.
2. Buatlah segitiga sama sisi dengan ukuran sisi 10 cm.
4. Hitunglah luas dari persegi panjang tersebut.
5. Lakukan kegiatan ini sebanyak sepuluh kali.
6. Isilah tabel berikut ini

<table>
<thead>
<tr>
<th>Persegi Panjang ke-</th>
<th>Luas Persegi Panjang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>Persegi Panjang ke-</td>
<td>Luas Persegi Panjang</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

Ayo Kita Menalar

Dari kesepuluh persegi panjang yang kamu buat, persegi panjang nomer berapakah yang mempunyai luas terbesar? Mungkinkah dibuat persegi panjang yang lain dengan luas lebih besar daripada luas persegi panjang tersebut? Hubungkan hasil dari kegiatan 3 ini dengan kasus yang ada pada kegiatan 3 ini! Bagaimana kamu menyelesaikan kasus yang dihadapi oleh pengusaha tersebut?

Ayo Kita Berbagi

Carilah aplikasi fungsi kuadrat yang ada pada kehidupanmu sehari-hari.

Ayo Kita Menanya

Buatlah pertanyaan dari hasil diskusi di atas!

Materi Esensi

Aplikasi Fungsi Kuadrat

Berikut langkah-langkah untuk menyelesaikan masalah optimalisasi fungsi kuadrat

Langkah 1. Tentukan variabel yang akan dioptimalisasi yaitu \(y \) dan variabel yang bebas yaitu \(x \)

Langkah 2. Jika model \(y = ax^2 + bx + c \) tidak diketahui maka bentuklah model \(y = ax^2 + bx + c \) dari permasalahan

Langkah 3. Tentukan nilai optimum dari model yang didapatkan pada Langkah 2.
Contoh 10.9

Pekerjaan Pak Suradi adalah pembuat Talang Air. Ia mendapat pesanan membuat sebuah Talang Air dari lebaran seng yang lebarnya 40 cm dengan melipat lebarinya atas tiga bagian seperti terlihat pada Gambar di bawah ini. Tentukan nilai x supaya volume dari talang maksimum.

Alternatif Penyelesaian:
Diketahui : Lembaran seng yang lebarnya 40 cm akan dibuat talang seperti gambar di atas.
Ditanya : Ukuran talang supaya maksimum
Penyelesaian:
Langkah 1. Menentukan variabel yang akan dioptimalisasi yaitu y dan variabel yang bebas yaitu x
 Variabel y dalam kasus ini adalah luas sisi talang dan variabel x seperti terlihat pada gambar

Langkah 2. Model permasalahan ini adalah
\[y = x(0,5(40 - x)) = 20x - \frac{1}{2}x^2 \]
yakni \[a = -\frac{1}{2}, b = 20 \text{ dan } c = 0 \]

Langkah 3. Agar y optimum maka nilai x adalah
\[\frac{b}{2a} = -\frac{20}{2\left(-\frac{1}{2}\right)} = -20 \text{ cm} \]

Contoh 10.10

Tinggi Balon Udara

Tinggi dari balon udara dalam x waktu dapat dinyatakan dalam bentuk fungsi \(f(x) = -16x^2 + 112x - 91 \) meter. Tentukan tinggi maksimum balon udara.
Alternatif Penyelesaian:
Diketahui: Fungsi \(f(x) = -16x^2 + 112x - 91 \) merupakan tinggi balon udara

Ditanya: Tinggi maksimum balon udara

Penyelesaian:
Langkah 1. Tentukan variabel yang akan dioptimalisasi; yaitu, \(y \) dan variabel yang bebas; yaitu \(x \)

Variabel \(y \) dalam kasus ini adalah \(f(x) \); yaitu fungsi tinggi balon

Langkah 2. Model \(f(x) = -16x^2 + 112x - 91 \)

Langkah 3. Tinggi maksimum

\[
y_o = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(112)^2 - 4(-16)(-91)}{4(-16)} = \frac{-6720}{-64} = 105 \text{ meter}
\]

Contoh 10.11
Luas Kebun

Seorang tukang kebun ingin memagari kebun yang dia miliki. Dia hanya bisa memagari kebun dengan keliling 100 m. Jika pagar yang diinginkan berbentuk persegi panjang, Berapa luas maksimum kebun yang bisa dipagari?

Alternatif Penyelesaian:
Diketahui: Diketahui keliling kebun yang akan dipagari 100 meter

Ditanya: Luas maksimum kebun yang akan dipagari

Penyelesaian:

\[
x
\]

\[
0,5(100 - 2x)
\]

\[
0,5(100 - 2x)
\]

\[
x
\]

Langkah 1. Menentukan variabel yang akan dioptimalisasi yaitu \(y \) dan variabel yang bebas yaitu \(x \)

Variabel \(y \) dalam kasus ini adalah luas persegi panjang pada gambar di atas.
Langkah 2. Model dalam kasus ini adalah \(y = x(0.5(100 - 2x)) = 50x - x^2 \)

Langkah 3. Luas maksimum

\[
\frac{dy}{dx} = \frac{-D}{4a} = \frac{b^2 - 4ac}{4a} = -\frac{(50)^2 - 4\left(-1\right)(0)}{4(-1)} = \frac{2500}{-4} = 625 \text{ meter}
\]

Ayo Kita Simpulkan

Berdasarkan contoh di atas, tuliskan langkah-langkah untuk menyelesaikan masalah optimalisasi fungsi kuadrat.

Ayo Kita Tinjau Ulang

1. Pada Contoh 10.8, bagaimana ukuran talang jika bentuk gambarnya sebagai berikut. Apakah menghasilkan hal yang sama?

 ![Diagram talang](image)

 \(40 - 2x \)

2. Pada Contoh 2, bagaimana jika \(f(x) = -16x^2 + 112x - 111 \)? Apa yang terjadi? Bagaimana hal itu bisa terjadi? Jelaskan?

Latihan 10.4 Aplikasi Fungsi Kuadrat

1. Suatu persegipanjang kelilingnya 60 cm. Tentukan ukuran persegipanjang agar mempunyai luas maksimum.

2. Selembar karton berbentuk persegipanjang akan dibuat kotak tanpa tutup dengan cara membuang persegi seluas \(s \times s \) cm\(^2\) di tiap pojoknya. Jika karton tersebut berukuran 30 \(\times \) 40 cm\(^2\). Tentukan volume kotak maksimum?

3. Sebuah segitiga siku-siku jumlah kedua sisi siku-sikunya adalah 50 cm. Tentukan ukuran segitiga siku-siku agar mempunyai luas maksimum.
4. Seorang siswa memotong selembar kertas. Kain hasil potongannya berbentuk persegi panjang dengan keliling 80 cm. Apabila siswa tersebut berharap mendapatkan kain hasil potongan mempunyai luas maksimum, tentukan panjang dan lebar kain.

5. Sebuah peluru ditembakkan vertikal ke atas. Tinggi peluru \(h \) (dalam meter) sebagai fungsi waktu \(t \) (dalam detik) dirumuskan dengan \(h(t) = -4t^2 + 40t \). Tentukan tinggi maksimum yang dapat dicapai peluru dan waktu yang diperlukan.

6. Diketahui bahwa tinggi Jam Gadang yangada di Sumatera adalah 26 meter. Tentukan pemecahan masalah berikut ini: (Petunjuk : Rumus fisika untuk benda yang dijatuhkan pada ketinggian tertentu adalah \(s = s_0 - v_0t + \frac{1}{2}gt^2 \) dan untuk benda yang dilempar keatas adalah \(h = h_0 + v_0t - \frac{1}{2}gt^2 \) dengan \(s \) adalah jarak benda yang dijatuhkan terhadap posisi awal benda (meter), \(h \) adalah jarak benda yang dilempar terhadap posisi awal benda (meter), \(t \) adalah waktu (detik), \(s_0 \) dan \(h_0 \) adalah ketinggian awal, dan \(v_0 \) adalah kecepatan awal benda (m/s))

 a. Pada suatu hari ada seseorang yang menjatuhkan apel dari atas gedung Jam Gadang. Jika diharapkan apel tiba di tanah pada 0,7 detik setelah pelemparan apel. Tentukan kecepatan awal apel.

7. Seorang pemain bola basket mempunyai tinggi 170 cm. Sedangkan tinggi keranjang adalah 3 meter. Pemain basket tersebut melempar bola basket sejauh 4 meter dari posisi tiang keranjang dan posisi awal bola berada tepat di atas kepala pemain. Ternyata lemparannya mempunyai tinggi maksimum 4,5 meter dan secara horisontal berjarak 2,5 meter dari pemain. Jika lemparannya membentuk parabola tentukan apakah bola tersebut masuk kedalam keranjang?
8. Seorang tukang bangunan mendapat pesanan membuat air mancur yang diletakkan dipusat kolam kecil yang berbentuk lingkaran. Pemesan menginginkan luas kolamnya adalah 10 m2. Jika tinggi maksimum dari air mancurnya adalah 2 meter dan air mancurnya harus jatuh tepat di tepian kolam maka tentukan persamaan kuadrat dari air mancurnya.

Sumber: http://www.wikihow.com

9. Seorang atlet lompat jauh sedang mengadakan latihan. Pada saat latihan dia mengambil awalan lari dengan kecepatan tertentu dan pada saat di balok tumpuan kecepatannya kira-kira 2.5 m/s kemudian pada saat itu juga dia melompat dengan sudut 30$^\circ$. Tentukan jarak atlet tersebut dengan balok tumpuan ketika dia sampai ditanah? (Petunjuk: Rumus fisika untuk jarak vertikal (tinggi) yang bergantung terhadap waktu dengan sudut awal 30$^\circ$ adalah $h = \frac{1}{2} v_0 t - 5t^2$ dan jarak horisontal yang bergantung pada waktu adalah $s = \frac{1}{2} \sqrt{3} v_0 t$ dengan t adalah waktu (detik), h adalah tinggi lompatan pada saat t (m), s adalah jarak horisontal pada saat t (m) dan v_0 adalah kecepatan awal)

10. Seorang atlet lompat tinggi sedang mengadakan latihan. Pada saat latihan dia mengambil awalan lari dengan kecepatan tertentu dan dia melompat dengan sudut mendekati 90$^\circ$ pada saat jaraknya sangat dekat sekali dengan tiang lompat. Satu detik setelah dia melompat, tubuhnya mencapai tanah. Tentukan kecepatan lari sesaat sebelum dia melompat supaya lompatannya bisa melewati tinggi mistar lompat yaitu 2 meter! (Petunjuk: Rumus fisika untuk
tinggi yang bergantung terhadap waktu dengan sudut awal lompatan mendekati \(90^\circ\) adalah \(h = \frac{1}{2} v_0 t - 5t^2\) dengan \(t\) adalah waktu (detik), \(h\) adalah tinggi lompatan pada saat \(t\) (m) dan \(v_0\) adalah kecepatan awal

Proyek

Ukurlah tinggi badanmu (i) dan juga panjang jangkauan kedua tanganmu (j). Nyatakan keduanya dalam satuan cm. Tugasmu adalah membuat fungsi kuadrat berdasarkan informasi tinggi dan jangkauan tangan tanganmu sebagai berikut:

1. Grafik fungsi kuadrat tersebut memiliki titik puncak pada koordinat \((0, h)\).
2. Grafik fungsi kuadrat tersebut memotong Sumbu-X pada koordinat
\[
\left(\frac{j}{2}, 0\right) dan \left(-\frac{j}{2}, 0\right)
\]

Ilustrasinya dapat dilihat pada gambar di bawah ini.

Sumber: Dokumen Kemdikbud

Uji Kompetensi 10

Fungsi Kuadrat

1. Gambarkan grafik fungsi kuadrat berikut
 a. \(f(x) = x^2 + x + 3\)
 c. \(f(x) = 2x^2 + 3x + 2\)
 b. \(f(x) = x^2 - 6x + 8\)

2. Tentukan fungsi kuadrat yang grafiknya memotong Sumbu-X pada titik koordinat (-2, 0) dan (5, 0) serta memotong Sumbu-Y pada titik koordinat (0, -20).

3. Tentukan fungsi kuadrat yang grafiknya memiliki titik puncak pada titik koordinat (1, 5) serta melalui titik koordinat (0, 7).

Di unduh dari: Bukupaket.com
4. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat (0, 5), (1, 6) dan (-1, 12).
5. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat (0, -2) serta memiliki sumbu simetri \(x = -\frac{1}{2} \).
6. Analisa kesalahan. Lily menentukan fungsi kuadrat yang memiliki akar \(x = 3 \) dan \(x = -2 \) serta grafiknya melalui titik koordinat (0, 12). Fungsi kuadrat yang diperoleh adalah \(y = -2x^2 - 2x + 12 \). Tentukan kesalahan yang dilakukan oleh Lily.
7. Tantangan. Tentukan banyaknya fungsi kuadrat \(y = ax^2 + bx + c \) yang memiliki dua akar berbeda dengan \(1 \leq a, b, c \leq 6 \).
8. Tentukan titik potong grafik fungsi linear \(y = 2x + 5 \) dengan grafik fungsi kuadrat \(y = 2x^2 - 4x + 9 \).
9. Tentukan titik potong grafik fungsi kuadrat \(y = 2x^2 + 4x + 1 \) dengan grafik fungsi kuadrat \(y = x^2 + 9x + 7 \).
10. Tantangan. Apakah mungkin garis horisontal memotong grafik fungsi kuadrat \(y = ax^2 + bx + c \) tepat pada satu titik koordinat?
11. Tentukan sumbu simetri dan nilai optimum dari grafik fungsi di bawah ini
 a. \(y = 3x^2 - 7x \)
 b. \(y = 8x^2 - 16x + 2 \)
 c. \(y = 6x^2 + 20x + 18 \)
12. Sketsalah grafik fungsi berikut ini
 a. \(y = 6x^2 + 5x + 7 \)
 b. \(y = 7x^2 - 3x + 2 \)
13. Diketahui suatu barisan 3, 11, 26, … . Suku ke-\(n \) dari barisan tersebut dapat dihitung dengan rumus \(U_n = an^2 + bn + c \). Tentukan barisan ke 100.
14. Diketahui suatu barisan 5, 19, 29, … . Suku ke-\(n \) dari barisan tersebut dapat dihitung dengan rumus \(U_n = an^2 + bn + c \). Tentukan nilai maksimum dari barisan tersebut.
15. Jika fungsi \(y = ax^2 + 3x + 5a \) mempunyai nilai maksimum 0, maka tentukan \(a \).
16. Seorang sopir mengemudikan mobilnya dengan kecepatan konstan 20 m/s. Tiba-tiba dia melihat orang yang sedang berdiri di tengah jalan yang berjarak 15 m depan mobilnya kemudian dia mengerem mobilnya dengan perlambatan 5 m/s\(^2\).
 Apakah mobil tersebut menabrak orang didepannya itu? (Petunjuk: rumus fisika untuk kasus ini adalah \(s = v_0 t - \frac{1}{2} at^2 \) dengan \(t \) menyatakan waktu (detik), \(s \) jarak tempuh pada saat \(t \), \(v_0 \) menyatakan kecepatan mobil dan \(a \) menyatakan perlambatan mobil)
17. Air Terjun Madakaripura terletak di Kecamatan Lumbang, Probolinggo merupakan salah satu air terjun di kawasan Taman Nasional Bromo Tengger Semeru. Tinggi dari air terjun ini adalah 200 m. Pada suatu hari ada seseorang yang melepas ikan tepat dari atas air terjun. Tentukan berapa waktu yang diperlukan ikan tersebut untuk mencapai dasar air terjun? Jika persamaan jarak tempuh dari ikan tersebut adalah \(y = y_0 - 24t^2 \) dengan \(y \) jarak tempuh, \(y_0 \) adalah tinggi air terjun dan \(t \) waktu tempuh.

18. Sebuah roket mempunyai dua bahan bakar yaitu salah satunya berada pada bagian ekor. Pada ketinggian tertentu bahan bakar ini akan dibuang untuk mengurangi bobot. Suatu roket mempunyai rumusan suatu persamaan \(y = 300t - 5t^2 \) dengan \(t \) adalah waktu (detik) dan \(y \) menyatakan tinggi roket. Jika ekor roket dibuang pada saat mencapai tinggi maksimum, tentukan tinggi roket pada saat membuang bahan bakarnya?

19. Seorang atlet tolak peluru mempunyai tinggi 160 cm. Atlit ini melempar peluru tepat di atas kepalanya. Ternyata lemparannya mempunyai tinggi maksimum 4,5 meter dan secara horisontal berjarak 2,5 meter dari pemain. Jika lemparannya membentuk parabola tentukan jarak yang dicapai peluru tersebut!

20. Balon udara jatuh dari ketinggian 19 kaki. Diberikan fungsi \(h = -32t^2 + 32 \) dengan \(h \) adalah tinggi balon setelah \(t \) detik. Kapan balon ini mencapai tanah?
KUESIONER
SIKAP SISWA TERHADAP
KOMPONEN DAN KEGIATAN PEMBELAJARAN

Nama Sekolah : Kelas/Semester :
Mata Pelajaran : Hari/tanggal :
Materi : Nama :

A. TUJUAN
Tujuan penggunaan kuesioner ini adalah untuk menjaring data sikap siswa terhadap kegiatan dan komponen pembelajaran dalam pelaksanaan pembelajaran matematika.

B. PETUNJUK

Beri tanda cek (✓) pada kolom yang sesuai menurut pendapatmu.

<table>
<thead>
<tr>
<th>No.</th>
<th>Aspek</th>
<th>Senang</th>
<th>Tidak Senang</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bagaimana sikapmu terhadap komponen berikut?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Materi pelajaran</td>
<td>..................</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>b. Buku Siswa</td>
<td>..................</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>c. Lembar Kerja Siswa (LKS)</td>
<td>..................</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>d. Suasana belajar di kelas</td>
<td>..................</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>e. Cara guru mengajar</td>
<td>..................</td>
<td>..................</td>
</tr>
</tbody>
</table>

Berikan alasan secara singkat atas jawaban yang diberikan!

<table>
<thead>
<tr>
<th></th>
<th>Baru</th>
<th>Tidak Baru</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bagaimana pendapatmu terhadap komponen berikut?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Materi pelajaran</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>b. Buku Siswa</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>c. Lembar Kerja Siswa (LKS)</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>d. Suasana belajar di kelas</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td>e. Cara guru mengajar</td>
<td>..................</td>
</tr>
</tbody>
</table>

Berikan alasan secara singkat atas jawaban yang diberikan!

Contoh Penilaian Sikap
Di unduh dari: Bukupaket.com
Rubrik Penilaian Sikap

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siswa memberikan respon senang dan baru terhadap komponen pembelajaran matematika, berminat, tertarik dan tidak merasa terbebani terhadap tugas dan aktivitas belajar matematika, tetapi merasakan kebermanfaatan belajar matematika.</td>
<td>4</td>
</tr>
</tbody>
</table>
Siswa memberikan respon senang dan baru terhadap komponen pembelajaran matematika, berminat, tertarik dan tidak merasa terbebani terhadap tugas dan aktivitas belajar matematika, tetapi tidak merasakan kebermanfaatan belajar matematika.

| 3 |

Siswa memberikan respon senang dan baru terhadap komponen pembelajaran matematika tetapi tidak berminat, tidak tertarik dan merasa terbebani terhadap tugas dan aktivitas belajar matematika, serta tidak merasakan kebermanfaatan belajar matematika.

| 2 |

Siswa memberikan respon tidak senang terhadap komponen pembelajaran matematika, tidak berminat, tidak tertarik dan merasa terbebani terhadap tugas dan aktivitas belajar matematika, serta tidak merasakan kebermanfaatan belajar matematika.

| 1 |

Contoh Penilaian Diri

PENILAIAN DIRI DALAM KELOMPOK
(SELF-ASSESSMENT IN GROUP)

Nama : ..
Anggota Kelompok : ..
Kegiatan Kelompok : ..

Untuk pertanyaan 1 sampai dengan 5 tulis masing-masing huruf sesuai dengan pendapatmu
- A = Selalu
- B = Jarang
- C = Jarang Sekali
- D = Tidak pernah

1. Selama diskusi saya memberikan saran kepada kelompok untuk didiskusikan.
2. Ketika Kami berdiskusi, setiap anggota memberikan masukan untuk didiskusikan.
3. Semua anggota kelompok harus melakukan sesuatu dalam kegiatan kelompok.
4. Setiap anggota kelompok mengerjakan kegiatannya sendiri dalam kegiatan kelompok.
Selama kegiatan, saya

 ___ Mendengarkan ___ Mengendalikan kelompok
 ___ Bertanya ___ Mengganggu kelompok
 ___ Merancang gagasan ___ Tidur

5. Selama kegiatan kelompok, tugas apa yang kamu lakukan?

Di unduh dari: Bukupaket.com
LEMBAR PENILAIAN PARTISIPASI

Nama : __
Kelas : __
Hari/Tanggal : __

Kamu telah mengikuti pelajaran matematika hari ini. Ingatlah kembali bagaimana partisipasi kamu dalam kelas matematika hari ini.

Jawablah pertanyaan berikut sejujurnya:
- Apakah kamu berpartisipasi dalam diskusi?
- Apakah kamu telah mempersiapkan diri sebelum masuk kelas, atau telah mengerjakan PR, sehingga kamu dapat menjawab pertanyaan di kelas?
- Apakah kamu bertanya ketika kamu tidak paham?
- Jika ada teman bertanya (kepada guru/kepadamu/kepada teman lain), apakah kamu menyimaknya?

Berikan skor atas partisipasi kamu, menurut ketentuan berikut ini.
> Jika kamu menjawab “ya” pada semua pertanyaan di atas, bagus ..., kamu telah melakukan partisipasi yang sempurna. Berikan nilai untuk dirimu 5.
> Jika kamu menjawab “ya” pada tiga pertanyaan di atas, berikan nilai untuk dirimu 4.
> Jika kamu menjawab “ya” pada dua pertanyaan di atas, berikan nilai untuk dirimu 3.
> Jika kamu hanya menjawab “ya” paling banyak pada satu pertanyaan di atas berikan nilai untuk dirimu 2, dan upayakan untuk meningkatkan partisipasimu dalam pelajaran matematika.

Nilai partisipasi saya hari ini adalah : ____________.

Tanda tangan__________________________.
(Lembar ini diisi setiap jam belajar matematika)
Tulislah dengan jujur, partisipasi anda dalam belajar matematika di kelas hari ini.

Partisipasi yang dimaksud adalah:
- Bertanya kepada teman di dalam kelas.
- Bertanya kepada guru di dalam kelas.
- Menyelesaikan tugas belajar dalam kelompok.
- Mempresentasikan hasil kerja di depan kelas.
- Menawarkan ide/menjawab pertanyaan teman di dalam kelas.
- Menawarkan ide/menjawab pertanyaan guru di dalam kelas.
- Membantu teman dalam belajar.

Pertanyaan utama yang harus dijawab pada tabel berikut adalah:
Partisipasi apa yang kamu lakukan dalam belajar Matematika hari ini?

<table>
<thead>
<tr>
<th>Hari/Tanggal</th>
<th>Partisipasi apa yang kamu lakukan?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contoh Pengolahan Laporan Pencapaian Kompetensi Matematika

a. Pengelolaan Skor Kompetensi Pengetahuan

Setelah pelaksanaan uji kompetensi pengetahuan matematika melalui tes dan penugasan dengan contoh instrumen dan pedoman penskoran yang telah disajikan di atas maka diperoleh skor. Dari beberapa kali pemberian tes dan penugasan dalam mengukur kompetensi pengetahuan, perlu pengelolaan skor untuk laporan pencapaian kompetensi. Berikut contoh untuk dipedomani guru.

<table>
<thead>
<tr>
<th>KD</th>
<th>Skor</th>
<th>Skor Akhir</th>
<th>Skor Akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tes</td>
<td>Penugasan</td>
<td>Skala 1-100</td>
</tr>
<tr>
<td>3.1</td>
<td>84</td>
<td>90</td>
<td>86</td>
</tr>
<tr>
<td>3.2</td>
<td>76</td>
<td>84</td>
<td>79</td>
</tr>
<tr>
<td>3.3</td>
<td>80</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>84</td>
<td>87</td>
<td>85</td>
</tr>
</tbody>
</table>

Rata-Rata Skor Akhir 3.22

Cara konvensi ke skala 1-4 adalah

\[
\text{Skor akhir} = \frac{\text{Skor yang diperoleh}}{\text{Skor maksimal}} \times 4
\]

b. Pengelolaan Skor Kompetensi Keterampilan

Setelah pelaksanaan uji kompetensi keterampilan matematika melalui penilaian juni kerja, proyek, dan portofolio dengan contoh instrumen dan rubrik yang telah disajikan di atas maka diperoleh skor. Dari beberapa kali pemberian tes dan penugasan dalam mengukur kompetensi pengetahuan, perlu pengelolaan skor untuk laporan pencapaian kompetensi. Berikut contoh untuk dipedomani guru.

<table>
<thead>
<tr>
<th>KD</th>
<th>Skor</th>
<th>Skor Akhir</th>
<th>Skor Akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tes Praktik</td>
<td>Projek</td>
<td>Portofolio</td>
</tr>
<tr>
<td>4.1</td>
<td>84</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>4.2</td>
<td>76</td>
<td>84</td>
<td>-</td>
</tr>
<tr>
<td>4.3</td>
<td>65</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

Rata-Rata Skor Akhir 3.09
Cara konvensi ke skala 1-4 adalah
\[
\text{Skor yang diperoleh} \times 4 = \text{Skor akhir}
\]

Petunjuk
1. Penilaian setiap mata pelajaran meliputi kompetensi pengetahuan, kompetensi keterampilan, dan kompetensi sikap.

2. Kompetensi pengetahuan dan kompetensi keterampilan menggunakan skala 1-4 (kelipatan 0.33), sedangkan kompetensi sikap menggunakan skala Sangat Baik (SB), Baik (B), Cukup (C), dan Kurang (K), yang dapat dikonversi ke dalam predikat A - D seperti pada tabel di bawah ini.

<table>
<thead>
<tr>
<th>Predikat</th>
<th>Pengetahuan</th>
<th>Keterampilan</th>
<th>Sikap</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>4</td>
<td>SB</td>
</tr>
<tr>
<td>A-</td>
<td>3,66</td>
<td>3,66</td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>3,33</td>
<td>3,33</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>B-</td>
<td>2,66</td>
<td>2,66</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>2,33</td>
<td>2,33</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>1,66</td>
<td>1,66</td>
<td>K</td>
</tr>
<tr>
<td>D+</td>
<td>1,33</td>
<td>1,33</td>
<td></td>
</tr>
<tr>
<td>D-</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

3. Ketuntasan minimal untuk seluruh kompetensi dasar pada kompetensi pengetahuan dan kompetensi keterampilan yaitu 2.66 (B-).

4. Pencapaian minimal untuk kompetensi sikap adalah B. Untuk kompetensi yang belum tuntas, kompetensi tersebut dituntaskan melalui pembelajaran remedial sebelum melanjutkan pada kompetensi berikutnya. Untuk mata pelajaran yang belum tuntas pada semester berjalan, dituntaskan melalui pembelajaran remedial sebelum memasuki semester berikutnya.
B. Petunjuk Pelaksanaan Remedial dan Pengayaan

Kurikulum Matematika 2013 adalah kurikulum berbasis kompetensi dengan pendekatan pembelajaran tuntas. Pembelajaran tuntas (mastery learning) dalam proses pembelajaran berbasis kompetensi dimaksudkan adalah pendekatan dalam pembelajaran yang mempersyaratkan peserta didik menguasai secara tuntas seluruh kompetensi dasar pokok bahasan atau mata pelajaran tertentu. Peserta didik dikatakan menguasai secara tuntas seluruh kompetensi dasar pada pokok bahasan atau mata pelajaran matematika pada kelas tertentu, apabila peserta didik tersebut memperoleh hasil penilaian/ujj kompetensi lebih besar atau sama dengan dari Ketuntasan Belajar (KB) yang ditetapkan dalam kurikulum. Sebaliknya peserta didik dikatakan tidak tuntas.

Bagi peserta didik yang memperoleh hasil penilaian/ujj kompetensi pada pokok bahasan mata pelajaran matematika kurang dari KB, wajib diberi pembelajaran remedial. Pembelajaran remedial pada hakikatnya adalah pemberian bantuan bagi peserta didik yang mengalami kesulitan atau kelambatan belajar. Bantuan dalam pembelajaran remedial mencakup (1) mengkaji ulang materi pada kompetensi dasar yang belum dicapai peserta didik, (2) pemberian tugas tersrtuktur yang dilakukan secara mandiri dan pemberian feedback atas hasil kerja peserta didik, (3) tutor sebay dalam implementasi model pembelajaran koperatif tipe jigsaw, dan (4) kerjasama sekolah dengan orang tua/wali peserta didik mengata masalah belajar peserta didik. Pemberian pembelajaran remedial meliputi dua langkah pokok, yaitu pertama mendiagnosis kesulitan belajar dan kedua memberikan perlakuan (treatment) pembelajaran remedial.

Bagi peserta didik yang memperoleh hasil penilaian/ujj kompetensi pada pokok bahasan mata pelajaran matematika kurang dari KB, wajib diberi pembelajaran pengayaan. Pembelajaran pengayaan adalah pembelajaran yang memberikan pengalaman (membangun berpikir tingkat tinggi, yaitu berpikir kritis dan kreatif) lebih mendalami materi terkait kompetensi atau kegiatan peserta didik yang melampaui persyaratan minimal yang ditentukan oleh kurikulum dan tidak semua peserta didik dapat melakukannya. Pendekatan pembelajaran yang diterapkan dalam pelaksanaan pengayaan melalui (1) pembelajaran berbasis masalah dan proyek untuk melatih peserta didik berpikir kritis dan kreatif, ketangguhan diri beradaptasi dan memecahkan masalah, (2) pemberian asesmen portofolio tambahan berbasis masalah, proyek, keterampilan proses, chek up diri dan asesmen kerjasama kelompok, dan (3) pemanfaatan IT dan ICT dalam proses pembelajaran.

Seluruh hasil belajar siswa yang tampak pada hasil penilaian/ujj kompetensi dan asesmen otentik/portofolio dijadikan bahan kajian guru, guru konseling, dan kepala sekolah. Hasil belajar tersebut dilaporkan kepada pemangku kepentingan (terutama pada orang tua) setiap bulannya.
DAFTAR PUSTAKA

Suwarsono, 2006, Matematika Sekolah Menengah Pertama, Widya Utama.

Sumber-sumber dari internet:
http://2.bp.blogspot.com/-tOgoISLgRKY/UAOX9hp7PaI/AAAAAAAAAB8/IAU7py22uxY/s1600/Balon-Udara.jpg, diunduh tanggal 4 Agustus 2014.
<table>
<thead>
<tr>
<th>Glosarium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangun ruang</td>
</tr>
<tr>
<td>Bangun ruang sisi lengkung</td>
</tr>
<tr>
<td>Barisan bilangan</td>
</tr>
<tr>
<td>Bidang koordinat</td>
</tr>
<tr>
<td>Busur</td>
</tr>
<tr>
<td>Data</td>
</tr>
<tr>
<td>Deret bilangan</td>
</tr>
<tr>
<td>Diagram batang</td>
</tr>
<tr>
<td>Diagram garis</td>
</tr>
<tr>
<td>Diagram lingkaran</td>
</tr>
<tr>
<td>Diagram pohon</td>
</tr>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Grafik</td>
</tr>
<tr>
<td>Fungsi</td>
</tr>
<tr>
<td>Jarak</td>
</tr>
<tr>
<td>Jari-jari</td>
</tr>
<tr>
<td>Jaring-jaring</td>
</tr>
<tr>
<td>Kejadian</td>
</tr>
<tr>
<td>Keliling lingkaran</td>
</tr>
<tr>
<td>Konstanta</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Koordinat</td>
</tr>
<tr>
<td>Luas permukaan</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Modus</td>
</tr>
<tr>
<td>Peluang</td>
</tr>
<tr>
<td>Persamaan garis lurus</td>
</tr>
<tr>
<td>Persamaan linear dua variabel</td>
</tr>
<tr>
<td>Pola</td>
</tr>
<tr>
<td>Ruang sampel</td>
</tr>
<tr>
<td>Suku</td>
</tr>
<tr>
<td>Sumbu</td>
</tr>
<tr>
<td>Sumbu-X</td>
</tr>
<tr>
<td>Sumbu-Y</td>
</tr>
<tr>
<td>Teorema Phytagoras</td>
</tr>
<tr>
<td>Titik asal</td>
</tr>
<tr>
<td>- Simbol yang mewakili suatu bilangan dalam suatu bentuk aljabar, misaln $2n + 4$, variabelnya adalah n.</td>
</tr>
<tr>
<td>- Simbol yang digunakan untuk menyatakan nilai yang tidak diketahui dalam suatu persamaan. Misal $a + 3 = 6$, variabelnya adalah a.</td>
</tr>
<tr>
<td>- Simbol yang digunakan untuk menyatakan suatu bilangan atau anggota himpunan pasangan terurut. Misal $y = x + 3$, variabelnya adalah x dan y.</td>
</tr>
<tr>
<td>Volume</td>
</tr>
</tbody>
</table>